Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Seif Eldawlatly
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (1): 158–189.
Published: 01 January 2010
FIGURES
| View All (11)
Abstract
View article
PDF
Coordination among cortical neurons is believed to be a key element in mediating many high-level cortical processes such as perception, attention, learning, and memory formation. Inferring the structure of the neural circuitry underlying this coordination is important to characterize the highly nonlinear, time-varying interactions between cortical neurons in the presence of complex stimuli. In this work, we investigate the applicability of dynamic Bayesian networks (DBNs) in inferring the effective connectivity between spiking cortical neurons from their observed spike trains. We demonstrate that DBNs can infer the underlying nonlinear and time-varying causal interactions between these neurons and can discriminate between mono- and polysynaptic links between them under certain constraints governing their putative connectivity. We analyzed conditionally Poisson spike train data mimicking spiking activity of cortical networks of small and moderately large size. The performance was assessed and compared to other methods under systematic variations of the network structure to mimic a wide range of responses typically observed in the cortex. Results demonstrate the utility of DBN in inferring the effective connectivity in cortical networks.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (2): 450–477.
Published: 01 February 2009
FIGURES
| View All (11)
Abstract
View article
PDF
Identifying functional connectivity between neuronal elements is an essential first step toward understanding how the brain orchestrates information processing at the single-cell and population levels to carry out biological computations. This letter suggests a new approach to identify functional connectivity between neuronal elements from their simultaneously recorded spike trains. In particular, we identify clusters of neurons that exhibit functional interdependency over variable spatial and temporal patterns of interaction. We represent neurons as objects in a graph and connect them using arbitrarily defined similarity measures calculated across multiple timescales. We then use a probabilistic spectral clustering algorithm to cluster the neurons in the graph by solving a minimum graph cut optimization problem. Using point process theory to model population activity, we demonstrate the robustness of the approach in tracking a broad spectrum of neuronal interaction, from synchrony to rate co-modulation, by systematically varying the length of the firing history interval and the strength of the connecting synapses that govern the discharge pattern of each neuron. We also demonstrate how activity-dependent plasticity can be tracked and quantified in multiple network topologies built to mimic distinct behavioral contexts. We compare the performance to classical approaches to illustrate the substantial gain in performance.