Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Shahar Mendelson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (4): 935–957.
Published: 01 April 2001
Abstract
View article
PDF
We introduce a new supervised learning model that is a nonhomogeneous Markov process and investigate its properties. We are interested in conditions that ensure that the process converges to a “correct state,” which means that the system agrees with the teacher on every “question.” We prove a sufficient condition for almost sure convergence to a correct state and give several applications to the convergence theorem. In particular, we prove several convergence results for well-known learning rules in neural networks.