Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Shawn Mikula
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (11): 2637–2661.
Published: 01 November 2008
Abstract
View article
PDF
We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (4): 881–902.
Published: 01 April 2005
Abstract
View article
PDF
We provide an analytical recurrent solution for the firing rates and cross-correlations of feedforward networks with arbitrary connectivity, excitatory or inhibitory, in response to steady-state spiking input to all neurons in the first network layer. Connections can go between any two layers as long as no loops are produced. Mean firing rates and pairwise cross-correlations of all input neurons can be chosen individually. We apply this method to study the propagation of rate and synchrony information through sample networks to address the current debate regarding the efficacy of rate codes versus temporal codes. Our results from applying the network solution to several examples support the following conclusions: (1) differential propagation efficacy of rate and synchrony to higher layers of a feedforward network is dependent on both network and input parameters, and (2) previous modeling and simulation studies exclusively supporting either rate or temporal coding must be reconsidered within the limited range of network and input parameters used. Our exact, analytical solution for feedforward networks of coincidence detectors should prove useful for further elucidating the efficacy and differential roles of rate and temporal codes in terms of different network and input parameter ranges.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (10): 2339–2358.
Published: 01 October 2003
Abstract
View article
PDF
In this letter, we extend our previous analytical results (Mikula & Niebur, 2003) for the coincidence detector by taking into account probabilistic frequency-dependent synaptic depression. We present a solution for the steady-state output rate of an ideal coincidence detector receiving an arbitrary number of input spike trains with identical binomial count distributions (which includes Poisson statistics as a special case) and identical arbitrary pairwise cross-correlations, from zero correlation (independent processes) to perfect correlation (identical processes). Synapses vary their efficacy probabilistically according to the observed depression mechanisms. Our results show that synaptic depression, if made sufficiently strong, will result in an inverted U-shaped curve for the output rate of a coincidence detector as a function of input rate. This leads to the counterintuitive prediction that higher presynaptic (input) rates may lead to lower postsynaptic (output) rates where the output rate may fall faster than the inverse of the input rate.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (3): 539–547.
Published: 01 March 2003
Abstract
View article
PDF
We derive analytically the solution for the output rate of the ideal coincidence detector. The solution is for an arbitrary number of input spike trains with identical binomial count distributions (which includes Poisson statistics as a special case) and identical arbitrary pairwise cross-correlations, from zero correlation (independent processes) to complete correlation (identical processes).