Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Shy Shoham
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (6): 1642–1664.
Published: 01 June 2009
FIGURES
| View All (6)
Abstract
View article
PDF
Emerging evidence indicates that information processing, as well as learning and memory processes, in both the network and single-neuron levels are highly dependent on the correlation structure of multiple spike trains. Contemporary experimental as well as theoretical studies that involve quasi-realistic neuronal stimulation thus require a method for controlling spike train correlations. This letter introduces a general new strategy for generating multiple spike trains with exactly controlled mean firing rates and correlation structure (defined in terms of auto- and cross-correlation functions). Our approach nonlinearly transforms random gaussian-distributed processes with a predistorted correlation structure into nonnegative rate processes, which are then used to generate doubly stochastic Poisson point processes with the required correlation structure. We show how this approach can be used to generate stationary or nonstationary spike trains from small or large groups of neurons with diverse auto- and cross-correlation structures. We analyze and derive analytical formulas for the high-order correlation structure of generated spike trains and discuss the limitations of this approach.