Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Simon J. Thorpe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (5): 1259–1276.
Published: 01 May 2009
FIGURES
| View All (6)
Abstract
View article
PDF
Recently it has been shown that a repeating arbitrary spatiotemporal spike pattern hidden in equally dense distracter spike trains can be robustly detected and learned by a single neuron equipped with spike-timing-dependent plasticity (STDP) (Masquelier, Guyonneau, & Thorpe, 2008). To be precise, the neuron becomes selective to successive coincidences of the pattern. Here we extend this scheme to a more realistic scenario with multiple repeating patterns and multiple STDP neurons “listening” to the incoming spike trains. These “listening” neurons are in competition: as soon as one fires, it strongly inhibits the others through lateral connections (one-winner-take-all mechanism). This tends to prevent the neurons from learning the same (parts of the) repeating patterns, as shown in simulations. Instead, the population self-organizes, trying to cover the different patterns or coding one pattern by the successive firings of several neurons, and a powerful distributed coding scheme emerges. Taken together, these results illustrate how the brain could easily encode and decode information in the spike times, a theory referred to as temporal coding, and how STDP could play a key role by detecting repeating patterns and generating selective response to them.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (4): 859–879.
Published: 01 April 2005
Abstract
View article
PDF
Spike timing-dependent plasticity (STDP) is a learning rule that modifies the strength of a neuron's synapses as a function of the precise temporal relations between input and output spikes. In many brains areas, temporal aspects of spike trains have been found to be highly reproducible. How will STDP affect a neuron's behavior when it is repeatedly presented with the same input spike pattern? We show in this theoretical study that repeated inputs systematically lead to a shaping of the neuron's selectivity, emphasizing its very first input spikes, while steadily decreasing the postsynaptic response latency. This was obtained under various conditions of background noise, and even under conditions where spiking latencies and firing rates, or synchrony, provided conflicting informations. The key role of first spikes demonstrated here provides further support for models using a single wave of spikes to implement rapid neural processing.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (6): 1255–1283.
Published: 01 June 2001
Abstract
View article
PDF
It is often supposed that the messages sent to the visual cortex by the retinal ganglion cells are encoded by the mean firing rates observed on spike trains generated with a Poisson process. Using an information transmission approach, we evaluate the performances of two such codes, one based on the spike count and the other on the mean interspike interval, and compare the results with a rank order code, where the first ganglion cells to emit a spike are given a maximal weight. Our results show that the rate codes are far from optimal for fast information transmission and that the temporal structure of the spike train can be efficiently used to maximize the information transfer rate under conditions where each cell needs to fire only one spike.