Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Sou Nobukawa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (12): 2388–2407.
Published: 08 November 2022
Abstract
View article
PDF
Locus coeruleus (LC) overactivity, especially in the right hemisphere, is a recognized pathophysiology of attention-deficit/hyperactivity disorder (ADHD) and may be related to inattention. LC activity synchronizes with the kinetics of the pupil diameter and reflects neural activity related to cognitive functions such as attention and arousal. Recent studies highlight the importance of the complexity of the temporal patterns of pupil diameter. Moreover, asymmetrical pupil diameter, which correlates with the severity of inattention, impulsivity, and hyperactivity in ADHD, might be attributed to a left-right imbalance in LC activity. We recently constructed a computational model of pupil diameter based on the newly discovered contralateral projection from the LC to the Edinger–Westphal nucleus (EWN), which demonstrated mechanisms for the complex temporal patterns of pupil kinetics; however, it remains unclear how LC overactivity and its asymmetry affect pupil diameter. We hypothesized that a neural model of pupil diameter control featuring left-right differences in LC activity and projections onto two opponent sides may clarify the role of pupil behavior in ADHD studies. Therefore, we developed a pupil diameter control model reflecting LC overactivity in the right hemisphere by incorporating a contralateral projection from the LC to EWN and evaluated the complexity of the temporal patterns of pupil diameter generated by the model. Upon comparisons with experimentally measured pupil diameters in adult patients with ADHD, the parameter region of interest of the neural model was estimated, which was a region in the two-dimensional plot of complexity versus left-side LC baseline activity and that of the right. A region resulting in relatively high right-side complexity, which corresponded to the pathophysiological indexes, was identified. We anticipate that the discovery of lateralization of complexity in pupil diameter fluctuations will facilitate the development of biomarkers for accurate diagnosis of ADHD.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (11): 2505–2532.
Published: 01 November 2016
FIGURES
| View All (140)
Abstract
View article
PDF
It is well known that cerebellar motor control is fine-tuned by the learning process adjusted according to rich error signals from inferior olive (IO) neurons. Schweighofer and colleagues proposed that these signals can be produced by chaotic irregular firing in the IO neuron assembly; such chaotic resonance (CR) was replicated in their computer demonstration of a Hodgkin-Huxley (HH)-type compartment model. In this study, we examined the response of CR to a periodic signal in the IO neuron assembly comprising the Llinás approach IO neuron model. This system involves empirically observed dynamics of the IO membrane potential and is simpler than the HH-type compartment model. We then clarified its dependence on electrical coupling strength, input signal strength, and frequency. Furthermore, we compared the physiological validity for IO neurons such as low firing rate and sustaining subthreshold oscillation between CR and conventional stochastic resonance (SR) and examined the consistency with asynchronous firings indicated by the previous model-based studies in the cerebellar learning process. In addition, the signal response of CR and SR was investigated in a large neuron assembly. As the result, we confirmed that CR was consistent with the above IO neuron’s characteristics, but it was not as easy for SR.