Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Stan Gielen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (9): 2256–2281.
Published: 01 September 2006
Abstract
View articletitled, Assessing Neuronal Coherence with Single-Unit, Multi-Unit, and Local Field Potentials
View
PDF
for article titled, Assessing Neuronal Coherence with Single-Unit, Multi-Unit, and Local Field Potentials
The purpose of this study was to obtain a better understanding of neuronal responses to correlated input, in particular focusing on the aspect of synchronization of neuronal activity. The first aim was to obtain an analytical expression for the coherence between the output spike train and correlated input and for the coherence between output spike trains of neurons with correlated input. For Poisson neurons, we could derive that the peak of the coherence between the correlated input and multi-unit activity increases proportionally with the square root of the number of neurons in the multi-unit recording. The coherence between two typical multi-unit recordings (2 to 10 single units) with partially correlated input increases proportionally with the number of units in the multi-unit recordings. The second aim of this study was to investigate to what extent the amplitude and signal-to-noise ratio of the coherence between input and output varied for single-unit versus multi-unit activity and how they are affected by the duration of the recording. The same problem was addressed for the coherence between two single-unit spike series and between two multi-unit spike series. The analytical results for the Poisson neuron and numerical simulations for the conductance-based leaky integrate-and-fire neuron and for the conductance-based Hodgkin-Huxley neuron show that the expectation value of the coherence function does not increase for a longer duration of the recording. The only effect of a longer duration of the spike recording is a reduction of the noise in the coherence function. The results of analytical derivations and computer simulations for model neurons show that the coherence for multi-unit activity is larger than that for single-unit activity. This is in agreement with the results of experimental data obtained from monkey visual cortex (V4). Finally, we show that multitaper techniques greatly contribute to a more accurate estimate of the coherence by reducing the bias and variance in the coherence estimate.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (9): 2005–2029.
Published: 01 September 2001
Abstract
View articletitled, Correlation Between Uncoupled Conductance-Based Integrate-and-Fire Neurons Due to Common and Synchronous Presynaptic Firing
View
PDF
for article titled, Correlation Between Uncoupled Conductance-Based Integrate-and-Fire Neurons Due to Common and Synchronous Presynaptic Firing
We investigate the firing characteristics of conductance-based integrate- and-fire neurons and the correlation of firing for uncoupled pairs of neurons as a result of common input and synchronous firing of multiple synaptic inputs. Analytical approximations are derived for the moments of the steady state potential and the effective time constant. We show that postsynaptic firing barely depends on the correlation between inhibitory inputs; only the inhibitory firing rate matters. In contrast, both the degree of synchrony and the firing rate of excitatory inputs are relevant. A coefficient of variation CV > 1 can be attained with low inhibitory firing rates and (Poisson-modulated) synchronized excitatory synaptic input, where both the number of presynaptic neurons in synchronous firing assemblies and the synchronous firing rate should be sufficiently large. The correlation in firing of a pair of uncoupled neurons due to common excitatory input is initially increased for increasing firing rates of independent inhibitory inputs but decreases for large inhibitory firing rates. Common inhibitory input to a pair of uncoupled neurons barely induces correlated firing, but amplifies the effect of common excitation. Synchronous firing assemblies in the common input further enhance the correlation and are essential to attain experimentally observed correlation values. Since uncorrelated common input (i.e., common input by neurons, which do not fire in synchrony) cannot induce sufficient postsynaptic correlation, we conclude that lateral couplings are essential to establish clusters of synchronously firing neurons.