Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Stefan D. Wilke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (1): 155–189.
Published: 01 January 2002
Abstract
View article
PDF
Fisher information is used to analyze the accuracy with which a neural population encodes D stimulus features. It turns out that the form of response variability has a major impact on the encoding capacity and therefore plays an important role in the selection of an appropriate neural model. In particular, in the presence of baseline firing, the reconstruction error rapidly increases with D in the case of Poissonian noise but not for additive noise. The existence of limited-range correlations of the type found in cortical tissue yields a saturation of the Fisher information content as a function of the population size only for an additive noise model. We also show that random variability in the correlation coefficient within a neural population, as found empirically, considerably improves the average encoding quality. Finally, the representational accuracy of populations with inhomogeneous tuning properties, either with variability in the tuning widths or fragmented into specialized subpopulations, is superior to the case of identical and radially symmetric tuning curves usually considered in the literature.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (7): 1519–1529.
Published: 01 July 2000
Abstract
View article
PDF
Neural responses in sensory systems are typically triggered by a multitude of stimulus features. Using information theory, we study the encoding accuracy of a population of stochastically spiking neurons characterized by different tuning widths for the different features. The optimal encoding strategy for representing one feature most accurately consists of narrow tuning in the dimension to be encoded, to increase the single-neuron Fisher information, and broad tuning in all other dimensions, to increase the number of active neurons. Extremely narrow tuning without sufficient receptive field overlap will severely worsen the coding. This implies the existence of an optimal tuning width for the feature to be encoded. Empirically, only a subset of all stimulus features will normally be accessible. In this case, relative encoding errors can be calculated that yield a criterion for the function of a neural population based on the measured tuning curves.