Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Stefan Rotter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (9): 2133–2184.
Published: 01 September 2008
Abstract
View article
PDF
Correlated neural activity has been observed at various signal levels (e.g., spike count, membrane potential, local field potential, EEG, fMRI BOLD). Most of these signals can be considered as superpositions of spike trains filtered by components of the neural system (synapses, membranes) and the measurement process. It is largely unknown how the spike train correlation structure is altered by this filtering and what the consequences for the dynamics of the system and for the interpretation of measured correlations are. In this study, we focus on linearly filtered spike trains and particularly consider correlations caused by overlapping presynaptic neuron populations. We demonstrate that correlation functions and statistical second-order measures like the variance, the covariance, and the correlation coefficient generally exhibit a complex dependence on the filter properties and the statistics of the presynaptic spike trains. We point out that both contributions can play a significant role in modulating the interaction strength between neurons or neuron populations. In many applications, the coherence allows a filter-independent quantification of correlated activity. In different network models, we discuss the estimation of network connectivity from the high-frequency coherence of simultaneous intracellular recordings of pairs of neurons.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (9): 2185–2226.
Published: 01 September 2008
Abstract
View article
PDF
The function of cortical networks depends on the collective interplay between neurons and neuronal populations, which is reflected in the correlation of signals that can be recorded at different levels. To correctly interpret these observations it is important to understand the origin of neuronal correlations. Here we study how cells in large recurrent networks of excitatory and inhibitory neurons interact and how the associated correlations affect stationary states of idle network activity. We demonstrate that the structure of the connectivity matrix of such networks induces considerable correlations between synaptic currents as well as between subthreshold membrane potentials, provided Dale's principle is respected. If, in contrast, synaptic weights are randomly distributed, input correlations can vanish, even for densely connected networks. Although correlations are strongly attenuated when proceeding from membrane potentials to action potentials (spikes), the resulting weak correlations in the spike output can cause substantial fluctuations in the population activity, even in highly diluted networks. We show that simple mean-field models that take the structure of the coupling matrix into account can adequately describe the power spectra of the population activity. The consequences of Dale's principle on correlations and rate fluctuations are discussed in the light of recent experimental findings.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (8): 1973–1999.
Published: 01 August 2008
Abstract
View article
PDF
There has been a long and lively debate on whether rate covariance and temporal coordination of spikes, regarded as potential origins for correlations in cortical spike signals, fulfill different roles in the cortical code. In this context, studies that report spike coordination have often been criticized for ignoring fast nonstationarities, which would result in wrongly assigned spike coordination. The underlying hypothesis of this critique is that spike coordination is essentially identical to rate covariation, only on a shorter timescale. This study investigates the validity of this critique. We provide a decomposition for the cross-correlation function of doubly stochastic point processes, where each of the components corresponds precisely to the concepts of dependence under investigation. This allows us to correct the correlation function for rate effects, which implies that spike coordination and rate covariation are statistically separable concepts of dependence. Furthermore, we present direct and intuitive model implementations of the discussed concepts and illustrate that their difference is not a matter of timescale. Analysis of data generated by our models and analytical description of the relevant estimators reveals, however, that spike coordination dramatically influences the accuracy of rate covariance estimation. As a consequence, extreme parameter combinations can lead to situations where the concept of dependence cannot be identified empirically. However, for a wide range of parameters, the concept of dependence underlying a given data set can be identified regardless of its timescale.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (1): 1–43.
Published: 01 January 2008
Abstract
View article
PDF
We studied the dynamics of large networks of spiking neurons with conductance-based (nonlinear) synapses and compared them to networks with current-based (linear) synapses. For systems with sparse and inhibition-dominated recurrent connectivity, weak external inputs induced asynchronous irregular firing at low rates. Membrane potentials fluctuated a few millivolts below threshold, and membrane conductances were increased by a factor 2 to 5 with respect to the resting state. This combination of parameters characterizes the ongoing spiking activity typically recorded in the cortex in vivo. Many aspects of the asynchronous irregular state in conductance-based networks could be sufficiently well characterized with a simple numerical mean field approach. In particular, it correctly predicted an intriguing property of conductance-based networks that does not appear to be shared by current-based models: they exhibit states of low-rate asynchronous irregular activity that persist for some period of time even in the absence of external inputs and without cortical pacemakers. Simulations of larger networks (up to 350,000 neurons) demonstrated that the survival time of self-sustained activity increases exponentially with network size.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (1): 67–101.
Published: 01 January 2003
Abstract
View article
PDF
Pairwise correlations among spike trains recorded in vivo have been frequently reported. It has been argued that correlated activity could play an important role in the brain, because it efficiently modulates the response of a postsynaptic neuron. We show here that a neuron's output firing rate critically depends on the higher-order statistics of the input ensemble. We constructed two statistical models of populations of spiking neurons that fired with the same rates and had identical pairwise correlations, but differed with regard to the higher-order interactions within the population. The first ensemble was characterized by clusters of spikes synchronized over the whole population. In the second ensemble, the size of spike clusters was, on average, proportional to the pairwise correlation. For both input models, we assessed the role of the size of the population, the firing rate, and the pairwise correlation on the output rate of two simple model neurons: a continuous firing-rate model and a conductance-based leaky integrate-and-fire neuron. An approximation to the mean output rate of the firing-rate neuron could be derived analytically with the help of shot noise theory. Interestingly, the essential features of the mean response of the two neuron models were similar. For both neuron models, the three input parameters played radically different roles with respect to the postsynaptic firing rate, depending on the interaction structure of the input. For instance, in the case of an ensemble with small and distributed spike clusters, the output firing rate was efficiently controlled by the size of the input population. In addition to the interaction structure, the ratio of inhibition to excitation was found to strongly modulate the effect of correlation on the postsynaptic firing rate.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (1): 121–153.
Published: 01 January 2002
Abstract
View article
PDF
Inspired by different conceptualizations of temporal neural coding schemes, there has been recent interest in the search for signs of precisely synchronized neural activity in the cortex. One method developed for this task is unitary-event analysis. This method tests multiple single-neuron recordings for short epochs with significantly more coincident spikes than expected from independent neurons. We reformulated the statistical test underlying this method using a coincidence count distribution based on empirical spike counts rather than on estimated spike probabilities. In the case of two neurons, the requirement of stationary firing rates, originally imposed on both neurons, can be relaxed; only the rate of one neuron needs to be stationary, while the other may follow an arbitrary time course. By analytical calculations of the test power curves of the original and the revised method, we demonstrate that the test power can be increased by a factor of two or more in physiologically realistic regimes. In addition, we analyze the effective significance levels of both methods for neural firing rates ranging between 0.2 Hz and 30 Hz.