Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Stefano Recanatesi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (3): 541–594.
Published: 17 February 2022
Abstract
View article
PDF
As animals adapt to their environments, their brains are tasked with processing stimuli in different sensory contexts. Whether these computations are context dependent or independent, they are all implemented in the same neural tissue. A crucial question is what neural architectures can respond flexibly to a range of stimulus conditions and switch between them. This is a particular case of flexible architecture that permits multiple related computations within a single circuit. Here, we address this question in the specific case of the visual system circuitry, focusing on context integration, defined as the integration of feedforward and surround information across visual space. We show that a biologically inspired microcircuit with multiple inhibitory cell types can switch between visual processing of the static context and the moving context. In our model, the VIP population acts as the switch and modulates the visual circuit through a disinhibitory motif. Moreover, the VIP population is efficient, requiring only a relatively small number of neurons to switch contexts. This circuit eliminates noise in videos by using appropriate lateral connections for contextual spatiotemporal surround modulation, having superior denoising performance compared to circuits where only one context is learned. Our findings shed light on a minimally complex architecture that is capable of switching between two naturalistic contexts using few switching units.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (10): 2684–2711.
Published: 01 October 2017
Abstract
View article
PDF
Human memory is capable of retrieving similar memories to a just retrieved one. This associative ability is at the base of our everyday processing of information. Current models of memory have not been able to underpin the mechanism that the brain could use in order to actively exploit similarities between memories. The current idea is that to induce transitions in attractor neural networks, it is necessary to extinguish the current memory. We introduce a novel mechanism capable of inducing transitions between memories where similarities between memories are actively exploited by the neural dynamics to retrieve a new memory. Populations of neurons that are selective for multiple memories play a crucial role in this mechanism by becoming attractors on their own. The mechanism is based on the ability of the neural network to control the excitation-inhibition balance.