Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Sung-Bae Cho
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (6): 1345–1355.
Published: 15 August 1997
Abstract
View article
PDF
This article presents a simple yet elegant pattern recognizer based on a dynamic node-splitting scheme for the self-organizing map that can adapt its structure as well as its weights. The scheme makes use of a structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundaries as close to the class boundaries as possible. In order to show the performance of the proposed scheme, experiments with the unconstrained handwritten digit database of Concordia University in Canada were conducted. The proposed method for an incremental formation of feature maps is 96.05 percent of the recognition rate. In view of the elegant simplicity of the approach, the reported performance is remarkable and can stand up to one of the best results reported in the literature with the same database.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1995) 7 (2): 358–369.
Published: 01 March 1995
Abstract
View article
PDF
This paper presents a hybrid architecture of hidden Markov models (HMMs) and a multilayer perceptron (MLP). This exploits the discriminative capability of a neural network classifier while using HMM formalism to capture the dynamics of input patterns. The main purpose is to improve the discriminative power of the HMM-based recognizer by additionally classifying the likelihood values inside them with an MLP classifier. To appreciate the performance of the presented method, we apply it to the recognition problem of on-line handwritten characters. Simulations show that the proposed architecture leads to a significant improvement in generalization performance over conventional approaches to sequential pattern recognition.