Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Susanne Schreiber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (12): 2798–2826.
Published: 01 December 2014
FIGURES
| View All (25)
Abstract
View article
PDF
The reliability of a spiking neuron depends on the frequency content of the driving input signal. Previous studies have shown that well above threshold, regularly firing neurons generate reliable responses when the input signal resonates with the firing frequency of the cell. Instead, well below threshold, reliable responses are obtained when the input frequency resonates with the subthreshold oscillations of the neuron. Previous theories, however, provide no clear prediction for the input frequency giving rise to maximally reliable spiking at threshold, which is probably the most relevant firing regime in mammalian cortex under physiological conditions. In particular, when the firing onset is governed by a subcritical Hopf bifurcation, the frequency of subthreshold oscillations often differs from the firing rate at threshold. The predictions of previous studies, hence, cannot be smoothly merged at threshold. Here we explore the behavior of reliability in bistable neurons near threshold using three types of driving stimuli: constant, periodic, and stochastic. We find that the two natural frequencies of the system, associated with the two coexisting attractors, provide a rich variety of possible locking modes with the external signal. Reliability is determined by the sensitivity to noise of each locking mode and by the transition probabilities between modes. Noise increases the amount of spike time jitter, and minimal jitter is obtained for input frequencies coinciding with the suprathreshold firing rate of the cell. In addition, noise may either enhance or inhibit transitions between the two attractors, depending on the input frequency. The dual role played by noise in bistable systems implies that reliability is determined by a delicate balance between spike time jitter and the rate of transitions between attractors.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (6): 1323–1346.
Published: 01 June 2002
Abstract
View article
PDF
We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information.