Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Sydney S. Cash
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (5): 1100–1135.
Published: 15 April 2022
Abstract
View article
PDF
With the accelerated development of neural recording technology over the past few decades, research in integrative neuroscience has become increasingly reliant on data analysis methods that are scalable to high-dimensional recordings and computationally tractable. Latent process models have shown promising results in estimating the dynamics of cognitive processes using individual models for each neuron's receptive field. However, scaling these models to work on high-dimensional neural recordings remains challenging. Not only is it impractical to build receptive field models for individual neurons of a large neural population, but most neural data analyses based on individual receptive field models discard the local history of neural activity, which has been shown to be critical in the accurate inference of the underlying cognitive processes. Here, we propose a novel, scalable latent process model that can directly estimate cognitive process dynamics without requiring precise receptive field models of individual neurons or brain nodes. We call this the direct discriminative decoder (DDD) model. The DDD model consists of (1) a discriminative process that characterizes the conditional distribution of the signal to be estimated, or state, as a function of both the current neural activity and its local history, and (2) a state transition model that characterizes the evolution of the state over a longer time period. While this modeling framework inherits advantages of existing latent process modeling methods, its computational cost is tractable. More important, the solution can incorporate any information from the history of neural activity at any timescale in computing the estimate of the state process. There are many choices in building the discriminative process, including deep neural networks or gaussian processes, which adds to the flexibility of the framework. We argue that these attributes of the proposed methodology, along with its applicability to different modalities of neural data, make it a powerful tool for high-dimensional neural data analysis. We also introduce an extension of these methods, called the discriminative-generative decoder (DGD). The DGD includes both discriminative and generative processes in characterizing observed data. As a result, we can combine physiological correlates like behavior with neural data to better estimate underlying cognitive processes. We illustrate the methods, including steps for inference and model identification, and demonstrate applications to multiple data analysis problems with high-dimensional neural recordings. The modeling results demonstrate the computational and modeling advantages of the DDD and DGD methods.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (9): 1751–1788.
Published: 01 September 2019
FIGURES
| View All (9)
Abstract
View article
PDF
Cognitive processes, such as learning and cognitive flexibility, are both difficult to measure and to sample continuously using objective tools because cognitive processes arise from distributed, high-dimensional neural activity. For both research and clinical applications, that dimensionality must be reduced. To reduce dimensionality and measure underlying cognitive processes, we propose a modeling framework in which a cognitive process is defined as a low-dimensional dynamical latent variable—called a cognitive state, which links high-dimensional neural recordings and multidimensional behavioral readouts. This framework allows us to decompose the hard problem of modeling the relationship between neural and behavioral data into separable encoding-decoding approaches. We first use a state-space modeling framework, the behavioral decoder, to articulate the relationship between an objective behavioral readout (e.g., response times) and cognitive state. The second step, the neural encoder, involves using a generalized linear model (GLM) to identify the relationship between the cognitive state and neural signals, such as local field potential (LFP). We then use the neural encoder model and a Bayesian filter to estimate cognitive state using neural data (LFP power) to generate the neural decoder. We provide goodness-of-fit analysis and model selection criteria in support of the encoding-decoding result. We apply this framework to estimate an underlying cognitive state from neural data in human participants ( N = 8 ) performing a cognitive conflict task. We successfully estimated the cognitive state within the 95% confidence intervals of that estimated using behavior readout for an average of 90% of task trials across participants. In contrast to previous encoder-decoder models, our proposed modeling framework incorporates LFP spectral power to encode and decode a cognitive state. The framework allowed us to capture the temporal evolution of the underlying cognitive processes, which could be key to the development of closed-loop experiments and treatments.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (7): 1271–1326.
Published: 01 July 2019
FIGURES
| View All (42)
Abstract
View article
PDF
Epilepsy is a neurological disorder characterized by the sudden occurrence of unprovoked seizures. There is extensive evidence of significantly altered brain connectivity during seizure periods in the human brain. Research on analyzing human brain functional connectivity during epileptic seizures has been limited predominantly to the use of the correlation method. However, spurious connectivity can be measured between two brain regions without having direct connection or interaction between them. Correlations can be due to the apparent interactions of the two brain regions resulting from common input from a third region, which may or may not be observed. Hence, researchers have recently proposed a sparse-plus-latent-regularized precision matrix (SLRPM) when there are unobserved or latent regions interacting with the observed regions. The SLRPM method yields partial correlations of the conditional statistics of the observed regions given the latent regions, thus identifying observed regions that are conditionally independent of both the observed and latent regions. We evaluate the performance of the methods using a spring-mass artificial network and assuming that some nodes cannot be observed, thus constituting the latent variables in the example. Several cases have been considered, including both sparse and dense connections, short-range and long-range connections, and a varying number of latent variables. The SLRPM method is then applied to estimate brain connectivity during epileptic seizures from human ECoG recordings. Seventy-four clinical seizures from five patients, all having complex partial epilepsy, were analyzed using SLRPM, and brain connectivity was quantified using modularity index, clustering coefficient, and eigenvector centrality. Furthermore, using a measure of latent inputs estimated by the SLRPM method, it was possible to automatically detect 72 of the 74 seizures with four false positives and find six seizures that were not marked manually.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (12): 3181–3218.
Published: 01 December 2017
FIGURES
| View All (20)
Abstract
View article
PDF
High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy. DDA is a time-domain analysis framework based on embedding theory in nonlinear dynamics that reveals the nonlinear invariant properties of an unknown dynamical system. The DDA embedding serves as a low-dimensional nonlinear dynamical basis onto which the data are mapped. This greatly reduces the risk of overfitting and improves the method's ability to fit classes of data. Since the basis is built on the dynamical structure of the data, preprocessing of the data (e.g., filtering) is not necessary. We performed a large-scale search for a DDA model that best fit ECoG recordings using a genetic algorithm to qualitatively discriminate between different cortical states and epileptic events for a set of 13 patients. A single DDA model with only three polynomial terms was identified. Singular value decomposition across the feature space of the model revealed both global and local dynamics that could differentiate electrographic and electroclinical seizures and provided insights into highly localized seizure onsets and diffuse seizure terminations. Other common ECoG features such as interictal periods, artifacts, and exogenous stimuli were also analyzed with DDA. This novel framework for signal processing of seizure information demonstrates an ability to reveal unique characteristics of the underlying dynamics of the seizure and may be useful in better understanding, detecting, and maybe even predicting seizures.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (3): 603–642.
Published: 01 March 2017
FIGURES
| View All (28)
Abstract
View article
PDF
The correlation method from brain imaging has been used to estimate functional connectivity in the human brain. However, brain regions might show very high correlation even when the two regions are not directly connected due to the strong interaction of the two regions with common input from a third region. One previously proposed solution to this problem is to use a sparse regularized inverse covariance matrix or precision matrix (SRPM) assuming that the connectivity structure is sparse. This method yields partial correlations to measure strong direct interactions between pairs of regions while simultaneously removing the influence of the rest of the regions, thus identifying regions that are conditionally independent. To test our methods, we first demonstrated conditions under which the SRPM method could indeed find the true physical connection between a pair of nodes for a spring-mass example and an RC circuit example. The recovery of the connectivity structure using the SRPM method can be explained by energy models using the Boltzmann distribution. We then demonstrated the application of the SRPM method for estimating brain connectivity during stage 2 sleep spindles from human electrocorticography (ECoG) recordings using an electrode array. The ECoG recordings that we analyzed were from a 32-year-old male patient with long-standing pharmaco-resistant left temporal lobe complex partial epilepsy. Sleep spindles were automatically detected using delay differential analysis and then analyzed with SRPM and the Louvain method for community detection. We found spatially localized brain networks within and between neighboring cortical areas during spindles, in contrast to the case when sleep spindles were not present.