Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Szymon Łęski
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (2): 541–575.
Published: 01 February 2012
FIGURES
| View All (10)
Abstract
View article
PDF
Local field potentials (LFP), the low-frequency part of extracellular electrical recordings, are a measure of the neural activity reflecting dendritic processing of synaptic inputs to neuronal populations. To localize synaptic dynamics, it is convenient, whenever possible, to estimate the density of transmembrane current sources (CSD) generating the LFP. In this work, we propose a new framework, the kernel current source density method (kCSD), for nonparametric estimation of CSD from LFP recorded from arbitrarily distributed electrodes using kernel methods. We test specific implementations of this framework on model data measured with one-, two-, and three-dimensional multielectrode setups. We compare these methods with the traditional approach through numerical approximation of the Laplacian and with the recently developed inverse current source density methods (iCSD). We show that iCSD is a special case of kCSD. The proposed method opens up new experimental possibilities for CSD analysis from existing or new recordings on arbitrarily distributed electrodes (not necessarily on a grid), which can be obtained in extracellular recordings of single unit activity with multiple electrodes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (1): 48–60.
Published: 01 January 2010
FIGURES
| View All (6)
Abstract
View article
PDF
We propose two ways of estimating current source density (CSD) from measurements of voltage on a Cartesian grid with missing recording points using the inverse CSD method. The simplest approach is to substitute local averages (LA) in place of missing data. A more elaborate alternative is to estimate a smaller number of CSD parameters than the actual number of recordings and to take the least-squares fit (LS). We compare the two approaches in the three-dimensional case on several sets of surrogate and experimental data, for varying numbers of missing data points, and discuss their advantages and drawbacks. One can construct CSD distributions for which one or the other approach is better. However, in general, the LA method is to be recommended as being more stable and more robust to variations in the recorded fields.