Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
T. Yoneyama
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (12): 2673–2680.
Published: 01 December 2001
Abstract
View article
PDF
This work concerns the selection of input-output pairs for improved training of multilayer perceptrons, in the context of approximation of univariate real functions. A criterion for the choice of the number of neurons in the hidden layer is also provided. The main idea is based on the fact that Chebyshev polynomials can provide approximations to bounded functions up to a prescribed tolerance, and, in turn, a polynomial of a certain order can be fitted with a three-layer perceptron with a prescribed number of hidden neurons. The results are applied to a sensor identification example.