Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Takehiro Suzuki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (11): 2212–2236.
Published: 01 November 2020
Abstract
View article
PDF
According to the neuromuscular model of virtual trajectory control, the postures and movements of limbs are performed by shifting the equilibrium positions determined by agonist and antagonist muscle activities. In this study, we develop virtual trajectory control for the reaching movements of a multi-joint arm, introducing a proportional-derivative feedback control scheme. In virtual trajectory control, it is crucial to design a suitable virtual trajectory such that the desired trajectory can be realized. To this end, we propose an algorithm for updating virtual trajectories in repetitive control, which can be regarded as a Newton-like method in a function space. In our repetitive control, the virtual trajectory is corrected without explicit calculation of the arm dynamics, and the actual trajectory converges to the desired trajectory. Using computer simulations, we assessed the proposed repetitive control for the trajectory tracking of a two-link arm. Our results confirmed that when the feedback gains were reasonably high and the sampling time was sufficiently small, the virtual trajectory was adequately updated, and the desired trajectory was almost achieved within approximately 10 iterative trials. We also propose a method for modifying the virtual trajectory to ensure that the formation of the actual trajectory is identical even when the feedback gains are changed. This modification method makes it possible to execute flexible control, in which the feedback gains are effectively altered according to motion tasks.