Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Thierry Mora
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (2): 233–269.
Published: 01 February 2019
Abstract
View article
PDF
The principles of neural encoding and computations are inherently collective and usually involve large populations of interacting neurons with highly correlated activities. While theories of neural function have long recognized the importance of collective effects in populations of neurons, only in the past two decades has it become possible to record from many cells simultaneously using advanced experimental techniques with single-spike resolution and to relate these correlations to function and behavior. This review focuses on the modeling and inference approaches that have been recently developed to describe the correlated spiking activity of populations of neurons. We cover a variety of models describing correlations between pairs of neurons, as well as between larger groups, synchronous or delayed in time, with or without the explicit influence of the stimulus, and including or not latent variables. We discuss the advantages and drawbacks or each method, as well as the computational challenges related to their application to recordings of ever larger populations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (11): 3009–3036.
Published: 01 November 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain this low variability is still lacking. Here we introduce a new model, with a correction to Poisson statistics, that can accurately predict the regularity of neural spike trains in response to a repeated stimulus. The model has only two parameters but can reproduce the observed variability in retinal recordings in various conditions. We show analytically why this approximation can work. In a model of the spike-emitting process where a refractory period is assumed, we derive that our simple correction can well approximate the spike train statistics over a broad range of firing rates. Our model can be easily plugged to stimulus processing models, like a linear-nonlinear model or its generalizations, to replace the Poisson spike train hypothesis that is commonly assumed. It estimates the amount of information transmitted much more accurately than Poisson models in retinal recordings. Thanks to its simplicity, this model has the potential to explain low variability in other areas.