Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-7 of 7
Thomas Parr
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (5): 807–852.
Published: 18 April 2023
Abstract
View article
PDF
Active inference is a probabilistic framework for modeling the behavior of biological and artificial agents, which derives from the principle of minimizing free energy. In recent years, this framework has been applied successfully to a variety of situations where the goal was to maximize reward, often offering comparable and sometimes superior performance to alternative approaches. In this article, we clarify the connection between reward maximization and active inference by demonstrating how and when active inference agents execute actions that are optimal for maximizing reward. Precisely, we show the conditions under which active inference produces the optimal solution to the Bellman equation, a formulation that underlies several approaches to model-based reinforcement learning and control. On partially observed Markov decision processes, the standard active inference scheme can produce Bellman optimal actions for planning horizons of 1 but not beyond. In contrast, a recently developed recursive active inference scheme (sophisticated inference) can produce Bellman optimal actions on any finite temporal horizon. We append the analysis with a discussion of the broader relationship between active inference and reinforcement learning.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (4): 829–855.
Published: 23 March 2022
Abstract
View article
PDF
Under the Bayesian brain hypothesis, behavioral variations can be attributed to different priors over generative model parameters. This provides a formal explanation for why individuals exhibit inconsistent behavioral preferences when confronted with similar choices. For example, greedy preferences are a consequence of confident (or precise) beliefs over certain outcomes. Here, we offer an alternative account of behavioral variability using Rényi divergences and their associated variational bounds. Rényi bounds are analogous to the variational free energy (or evidence lower bound) and can be derived under the same assumptions. Importantly, these bounds provide a formal way to establish behavioral differences through an α parameter, given fixed priors. This rests on changes in α that alter the bound (on a continuous scale), inducing different posterior estimates and consequent variations in behavior. Thus, it looks as if individuals have different priors and have reached different conclusions. More specifically, α → 0 + optimization constrains the variational posterior to be positive whenever the true posterior is positive. This leads to mass-covering variational estimates and increased variability in choice behavior. Furthermore, α → + ∞ optimization constrains the variational posterior to be zero whenever the true posterior is zero. This leads to mass-seeking variational posteriors and greedy preferences. We exemplify this formulation through simulations of the multiarmed bandit task. We note that these α parameterizations may be especially relevant (i.e., shape preferences) when the true posterior is not in the same family of distributions as the assumed (simpler) approximate density, which may be the case in many real-world scenarios. The ensuing departure from vanilla variational inference provides a potentially useful explanation for differences in behavioral preferences of biological (or artificial) agents under the assumption that the brain performs variational Bayesian inference.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (3): 674–712.
Published: 01 March 2021
FIGURES
Abstract
View article
PDF
Active inference is a first principle account of how autonomous agents operate in dynamic, nonstationary environments. This problem is also considered in reinforcement learning, but limited work exists on comparing the two approaches on the same discrete-state environments. In this letter, we provide (1) an accessible overview of the discrete-state formulation of active inference, highlighting natural behaviors in active inference that are generally engineered in reinforcement learning, and (2) an explicit discrete-state comparison between active inference and reinforcement learning on an OpenAI gym baseline. We begin by providing a condensed overview of the active inference literature, in particular viewing the various natural behaviors of active inference agents through the lens of reinforcement learning. We show that by operating in a pure belief-based setting, active inference agents can carry out epistemic exploration—and account for uncertainty about their environment—in a Bayes-optimal fashion. Furthermore, we show that the reliance on an explicit reward signal in reinforcement learning is removed in active inference, where reward can simply be treated as another observation we have a preference over; even in the total absence of rewards, agent behaviors are learned through preference learning. We make these properties explicit by showing two scenarios in which active inference agents can infer behaviors in reward-free environments compared to both Q-learning and Bayesian model-based reinforcement learning agents and by placing zero prior preferences over rewards and learning the prior preferences over the observations corresponding to reward. We conclude by noting that this formalism can be applied to more complex settings (e.g., robotic arm movement, Atari games) if appropriate generative models can be formulated. In short, we aim to demystify the behavior of active inference agents by presenting an accessible discrete state-space and time formulation and demonstrate these behaviors in a OpenAI gym environment, alongside reinforcement learning agents.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (3): 713–763.
Published: 01 March 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Active inference offers a first principle account of sentient behavior, from which special and important cases—for example, reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design—can be derived. Active inference finesses the exploitation-exploration dilemma in relation to prior preferences by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this letter, we consider a sophisticated kind of active inference using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about “what would happen if I did that” to “what I would believe about what would happen if I did that.” The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states as opposed to states per se. We illustrate the competence of this scheme using numerical simulations of deep decision problems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (2): 398–446.
Published: 01 February 2021
FIGURES
Abstract
View article
PDF
The positive-negative axis of emotional valence has long been recognized as fundamental to adaptive behavior, but its origin and underlying function have largely eluded formal theorizing and computational modeling. Using deep active inference, a hierarchical inference scheme that rests on inverting a model of how sensory data are generated, we develop a principled Bayesian model of emotional valence. This formulation asserts that agents infer their valence state based on the expected precision of their action model—an internal estimate of overall model fitness (“subjective fitness”). This index of subjective fitness can be estimated within any environment and exploits the domain generality of second-order beliefs (beliefs about beliefs). We show how maintaining internal valence representations allows the ensuing affective agent to optimize confidence in action selection preemptively. Valence representations can in turn be optimized by leveraging the (Bayes-optimal) updating term for subjective fitness, which we label affective charge (AC). AC tracks changes in fitness estimates and lends a sign to otherwise unsigned divergences between predictions and outcomes. We simulate the resulting affective inference by subjecting an in silico affective agent to a T-maze paradigm requiring context learning, followed by context reversal. This formulation of affective inference offers a principled account of the link between affect, (mental) action, and implicit metacognition. It characterizes how a deep biological system can infer its affective state and reduce uncertainty about such inferences through internal action (i.e., top-down modulation of priors that underwrite confidence). Thus, we demonstrate the potential of active inference to provide a formal and computationally tractable account of affect. Our demonstration of the face validity and potential utility of this formulation represents the first step within a larger research program. Next, this model can be leveraged to test the hypothesized role of valence by fitting the model to behavioral and neuronal responses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (12): 2390–2431.
Published: 01 December 2019
FIGURES
| View All (5)
Abstract
View article
PDF
To exhibit social intelligence, animals have to recognize whom they are communicating with. One way to make this inference is to select among internal generative models of each conspecific who may be encountered. However, these models also have to be learned via some form of Bayesian belief updating. This induces an interesting problem: When receiving sensory input generated by a particular conspecific, how does an animal know which internal model to update? We consider a theoretical and neurobiologically plausible solution that enables inference and learning of the processes that generate sensory inputs (e.g., listening and understanding) and reproduction of those inputs (e.g., talking or singing), under multiple generative models. This is based on recent advances in theoretical neurobiology—namely, active inference and post hoc (online) Bayesian model selection. In brief, this scheme fits sensory inputs under each generative model. Model parameters are then updated in proportion to the probability that each model could have generated the input (i.e., model evidence). The proposed scheme is demonstrated using a series of (real zebra finch) birdsongs, where each song is generated by several different birds. The scheme is implemented using physiologically plausible models of birdsong production. We show that generalized Bayesian filtering, combined with model selection, leads to successful learning across generative models, each possessing different parameters. These results highlight the utility of having multiple internal models when making inferences in social environments with multiple sources of sensory information.
Includes: Multimedia, Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (9): 2319–2347.
Published: 01 September 2018
FIGURES
| View All (5)
Abstract
View article
PDF
To act upon the world, creatures must change continuous variables such as muscle length or chemical concentration. In contrast, decision making is an inherently discrete process, involving the selection among alternative courses of action. In this article, we consider the interface between the discrete and continuous processes that translate our decisions into movement in a Newtonian world—and how movement informs our decisions. We do so by appealing to active inference, with a special focus on the oculomotor system. Within this exemplar system, we argue that the superior colliculus is well placed to act as a discrete-continuous interface. Interestingly, when the neuronal computations within the superior colliculus are formulated in terms of active inference, we find that many aspects of its neuroanatomy emerge from the computations it must perform in this role.