Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Timothée Leleu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (5): 1263–1292.
Published: 01 May 2017
FIGURES
| View All (76)
Abstract
View article
PDF
Recent experiments have shown that stereotypical spatiotemporal patterns occur during brief packets of spiking activity in the cortex, and it has been suggested that top-down inputs can modulate these patterns according to the context. We propose a simple model that may explain important features of these experimental observations and is analytically tractable. The key mechanism underlying this model is that context-dependent top-down inputs can modulate the effective connection strengths between neurons because of short-term synaptic depression. As a result, the degree of synchrony and, in turn, the spatiotemporal patterns of spiking activity that occur during packets are modulated by the top-down inputs. This is shown using an analytical framework, based on avalanche dynamics, that allows calculating the probability that a given neuron spikes during a packet and numerical simulations. Finally, we show that the spatiotemporal patterns that replay previously experienced sequential stimuli and their binding with their corresponding context can be learned because of spike-timing-dependent plasticity.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (11): 3131–3182.
Published: 01 December 2013
FIGURES
| View All (71)
Abstract
View article
PDF
We study a realistic model of a cortical column taking into account short-term plasticity between pyramidal cells and interneurons. The simulation of leaky integrate-and-fire neurons shows that low-frequency oscillations emerge spontaneously as a result of intrinsic network properties. These oscillations are composed of prolonged phases of high and low activity reminiscent of cortical up and down states, respectively. We simplify the description of the network activity by using a mean field approximation and reduce the system to two slow variables exhibiting some relaxation oscillations. We identify two types of slow oscillations. When the combination of dynamic synapses between pyramidal cells and those between interneurons accounts for the generation of these slow oscillations, the end of the up phase is characterized by asynchronous fluctuations of the membrane potentials. When the slow oscillations are mainly driven by the dynamic synapses between interneurons, the network exhibits fluctuations of membrane potentials, which are more synchronous at the end than at the beginning of the up phase. Additionally, finite size effect and slow synaptic currents can modify the irregularity and frequency, respectively, of these oscillations. Finally, we consider possible roles of a slow oscillatory input modeling long-range interactions in the brain. Spontaneous slow oscillations of local networks are modulated by the oscillatory input, which induces, notably, synchronization, subharmonic synchronization, and chaotic relaxation oscillations in the mean field approximation. In the case of forced oscillations, the slow population-averaged activity of leaky integrate-and-fire neurons can have both deterministic and stochastic temporal features. We discuss the possibility that long-range connectivity controls the emergence of slow sequential patterns in local populations due to the tendency of a cortical column to oscillate at low frequency.