Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Tom N. Todd
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1995) 7 (1): 206–217.
Published: 01 January 1995
Abstract
View article
PDF
In this paper we present results from the first use of neural networks for real-time control of the high-temperature plasma in a tokamak fusion experiment. The tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In an effort to improve the energy confinement properties of the high-temperature plasma inside tokamaks, recent experiments have focused on the use of noncircular cross-sectional plasma shapes. However, the accurate generation of such plasmas represents a demanding problem involving simultaneous control of several parameters on a time scale as short as a few tens of microseconds. Application of neural networks to this problem requires fast hardware, for which we have developed a fully parallel custom implementation of a multilayer perceptron, based on a hybrid of digital and analogue techniques.