Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Vugar E. Ismailov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (7): 1289–1304.
Published: 01 July 2016
FIGURES
| View All (5)
Abstract
View article
PDF
The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this note, we consider constructive approximation on any finite interval of by neural networks with only one neuron in the hidden layer. We construct algorithmically a smooth, sigmoidal, almost monotone activation function providing approximation to an arbitrary continuous function within any degree of accuracy. This algorithm is implemented in a computer program, which computes the value of at any reasonable point of the real axis.