Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
William Finnoff
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1994) 6 (2): 285–295.
Published: 01 March 1994
Abstract
View article
PDF
In this paper we discuss the asymptotic properties of the most commonly used variant of the backpropagation algorithm in which network weights are trained by means of a local gradient descent on examples drawn randomly from a fixed training set, and the learning rate η of the gradient updates is held constant (simple backpropagation). Using stochastic approximation results, we show that for η → 0 this training process approaches a batch training. Further, we show that for small η one can approximate simple backpropagation by the sum of a batch training process and a gaussian diffusion, which is the unique solution to a linear stochastic differential equation. Using this approximation we indicate the reasons why simple backpropagation is less likely to get stuck in local minima than the batch training process and demonstrate this empirically on a number of examples.