Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
William G. Baxt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1995) 7 (3): 624–638.
Published: 01 May 1995
Journal Articles
Publisher: Journals Gateway
Neural Computation (1992) 4 (5): 772–780.
Published: 01 September 1992
Abstract
View article
PDF
When either detection rate (sensitivity) or false alarm rate (specificity) is optimized in an artificial neural network trained to identify myocardial infarction, the increase in the accuracy of one is always done at the expense of the accuracy of the other. To overcome this loss, two networks that were separately trained on populations of patients with different likelihoods of myocardial infarction were used in concert. One network was trained on clinical pattern sets derived from patients who had a low likelihood of myocardial infarction, while the other was trained on pattern sets derived from patients with a high likelihood of myocardial infarction. Unknown patterns were analyzed by both networks. If the output generated by the network trained on the low risk patients was below an empirically set threshold, this output was chosen as the diagnostic output. If the output was above that threshold, the output of the network trained on the high risk patients was used as the diagnostic output. The dual network correctly identified 39 of the 40 patients who had sustained a myocardial infarction and 301 of 306 patients who did not have a myocardial infarction for a detection rate (sensitivity) and false alarm rate (1-specificity) of 97.50 and 1.63%, respectively. A parallel control experiment using a single network but identical training information correctly identified 39 of 40 patients who had sustained a myocardial infarction and 287 of 306 patients who had not sustained a myocardial infarction ( p = 0.003).
Journal Articles
Publisher: Journals Gateway
Neural Computation (1990) 2 (4): 480–489.
Published: 01 December 1990
Abstract
View article
PDF
A nonlinear artificial neural network trained by backpropagation was applied to the diagnosis of acute myocardial infarction (coronary occlusion) in patients presenting to the emergency department with acute anterior chest pain. Three-hundred and fifty-six patients were retrospectively studied, of which 236 did not have acute myocardial infarction and 120 did have infarction. The network was trained on a randomly chosen set of half of the patients who had not sustained acute myocardial infarction and half of the patients who had sustained infarction. It was then tested on a set consisting of the remaining patients to which it had not been exposed. The network correctly identified 92% of the patients with acute myocardial infarction and 96% of the patients without infarction. When all patients with the electrocardiographic evidence of infarction were removed from the cohort, the network correctly identified 80% of the patients with infarction. This is substantially better than the performance reported for either physicians or any other analytical approach.