Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Wolfgang Konen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1993) 5 (5): 719–735.
Published: 01 September 1993
Abstract
View article
PDF
A large attraction of neural systems lies in their promise of replacing programming by learning. A problem with many current neural models is that with realistically large input patterns learning time explodes. This is a problem inherent in a notion of learning that is based almost entirely on statistical estimation. We propose here a different learning style where significant relations in the input pattern are recognized and expressed by the unsupervised self-organization of dynamic links. The power of this mechanism is due to the very general a priori principle of conservation of topological structure. We demonstrate that style with a system that learns to classify mirror symmetric pixel patterns from single examples.