Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-20 of 22
Wolfgang Maass
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (6): 1371–1407.
Published: 01 June 2013
FIGURES
| View All (19)
Abstract
View article
PDF
The brain faces the problem of inferring reliable hidden causes from large populations of noisy neurons, for example, the direction of a moving object from spikes in area MT. It is known that a theoretically optimal likelihood decoding could be carried out by simple linear readout neurons if weights of synaptic connections were set to certain values that depend on the tuning functions of sensory neurons. We show here that such theoretically optimal readout weights emerge autonomously through STDP in conjunction with lateral inhibition between readout neurons. In particular, we identify a class of optimal STDP learning rules with homeostatic plasticity, for which the autonomous emergence of optimal readouts can be explained on the basis of a rigorous learning theory. This theory shows that the network motif we consider approximates expectation-maximization for creating internal generative models for hidden causes of high-dimensional spike inputs. Notably, we find that this optimal functionality can be well approximated by a variety of STDP rules beyond those predicted by theory. Furthermore, we show that this learning process is very stable and automatically adjusts weights to changes in the number of readout neurons, the tuning functions of sensory neurons, and the statistics of external stimuli.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (12): 2979–3035.
Published: 01 December 2010
FIGURES
| View All (24)
Abstract
View article
PDF
Neurons in the brain are able to detect and discriminate salient spatiotemporal patterns in the firing activity of presynaptic neurons. It is open how they can learn to achieve this, especially without the help of a supervisor. We show that a well-known unsupervised learning algorithm for linear neurons, slow feature analysis (SFA), is able to acquire the discrimination capability of one of the best algorithms for supervised linear discrimination learning, the Fisher linear discriminant (FLD), given suitable input statistics. We demonstrate the power of this principle by showing that it enables readout neurons from simulated cortical microcircuits to learn without any supervision to discriminate between spoken digits and to detect repeated firing patterns that are embedded into a stream of noise spike trains with the same firing statistics. Both these computer simulations and our theoretical analysis show that slow feature extraction enables neurons to extract and collect information that is spread out over a trajectory of firing states that lasts several hundred ms. In addition, it enables neurons to learn without supervision to keep track of time (relative to a stimulus onset, or the initiation of a motor response). Hence, these results elucidate how the brain could compute with trajectories of firing states rather than only with fixed point attractors. It also provides a theoretical basis for understanding recent experimental results on the emergence of view- and position-invariant classification of visual objects in inferior temporal cortex.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (8): 1961–1992.
Published: 01 August 2010
FIGURES
| View All (6)
Abstract
View article
PDF
Neurons receive thousands of presynaptic input spike trains while emitting a single output spike train. This drastic dimensionality reduction suggests considering a neuron as a bottleneck for information transmission. Extending recent results, we propose a simple learning rule for the weights of spiking neurons derived from the information bottleneck (IB) framework that minimizes the loss of relevant information transmitted in the output spike train. In the IB framework, relevance of information is defined with respect to contextual information, the latter entering the proposed learning rule as a “third” factor besides pre- and postsynaptic activities. This renders the theoretically motivated learning rule a plausible model for experimentally observed synaptic plasticity phenomena involving three factors. Furthermore, we show that the proposed IB learning rule allows spiking neurons to learn a predictive code, that is, to extract those parts of their input that are predictive for future input.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (6): 1399–1444.
Published: 01 June 2010
FIGURES
| View All (12)
Abstract
View article
PDF
We introduce a framework for decision making in which the learning of decision making is reduced to its simplest and biologically most plausible form: Hebbian learning on a linear neuron. We cast our Bayesian-Hebb learning rule as reinforcement learning in which certain decisions are rewarded and prove that each synaptic weight will on average converge exponentially fast to the log-odd of receiving a reward when its pre- and postsynaptic neurons are active. In our simple architecture, a particular action is selected from the set of candidate actions by a winner-take-all operation. The global reward assigned to this action then modulates the update of each synapse. Apart from this global reward signal, our reward-modulated Bayesian Hebb rule is a pure Hebb update that depends only on the coactivation of the pre- and postsynaptic neurons, not on the weighted sum of all presynaptic inputs to the postsynaptic neuron as in the perceptron learning rule or the Rescorla-Wagner rule. This simple approach to action-selection learning requires that information about sensory inputs be presented to the Bayesian decision stage in a suitably preprocessed form resulting from other adaptive processes (acting on a larger timescale) that detect salient dependencies among input features. Hence our proposed framework for fast learning of decisions also provides interesting new hypotheses regarding neural nodes and computational goals of cortical areas that provide input to the final decision stage.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (9): 2502–2523.
Published: 01 September 2009
FIGURES
| View All (6)
Abstract
View article
PDF
From a theoretical point of view, statistical inference is an attractive model of brain operation. However, it is unclear how to implement these inferential processes in neuronal networks. We offer a solution to this problem by showing in detailed simulations how the belief propagation algorithm on a factor graph can be embedded in a network of spiking neurons. We use pools of spiking neurons as the function nodes of the factor graph. Each pool gathers “messages” in the form of population activities from its input nodes and combines them through its network dynamics. Each of the various output messages to be transmitted over the edges of the graph is computed by a group of readout neurons that feed in their respective destination pools. We use this approach to implement two examples of factor graphs. The first example, drawn from coding theory, models the transmission of signals through an unreliable channel and demonstrates the principles and generality of our network approach. The second, more applied example is of a psychophysical mechanism in which visual cues are used to resolve hypotheses about the interpretation of an object's shape and illumination. These two examples, and also a statistical analysis, demonstrate good agreement between the performance of our networks and the direct numerical evaluation of belief propagation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (4): 911–959.
Published: 01 April 2009
FIGURES
| View All (12)
Abstract
View article
PDF
Independent component analysis (or blind source separation) is assumed to be an essential component of sensory processing in the brain and could provide a less redundant representation about the external world. Another powerful processing strategy is the optimization of internal representations according to the information bottleneck method. This method would allow extracting preferentially those components from high-dimensional sensory input streams that are related to other information sources, such as internal predictions or proprioceptive feedback. However, there exists a lack of models that could explain how spiking neurons could learn to execute either of these two processing strategies. We show in this article how stochastically spiking neurons with refractoriness could in principle learn in an unsupervised manner to carry out both information bottleneck optimization and the extraction of independent components. We derive suitable learning rules, which extend the well-known BCM rule, from abstract information optimization principles. These rules will simultaneously keep the firing rate of the neuron within a biologically realistic range.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (1): 288–309.
Published: 01 January 2008
Abstract
View article
PDF
The perceptron (also referred to as McCulloch-Pitts neuron, or linear threshold gate) is commonly used as a simplified model for the discrimination and learning capability of a biological neuron. Criteria that tell us when a perceptron can implement (or learn to implement) all possible dichotomies over a given set of input patterns are well known, but only for the idealized case, where one assumes that the sign of a synaptic weight can be switched during learning. We present in this letter an analysis of the classification capability of the biologically more realistic model of a sign-constrained perceptron, where the signs of synaptic weights remain fixed during learning (which is the case for most types of biological synapses). In particular, the VC-dimension of sign-constrained perceptrons is determined, and a necessary and sufficient criterion is provided that tells us when all 2 m dichotomies over a given set of m patterns can be learned by a sign-constrained perceptron. We also show that uniformity of L 1 norms of input patterns is a sufficient condition for full representation power in the case where all weights are required to be nonnegative. Finally, we exhibit cases where the sign constraint of a perceptron drastically reduces its classification capability. Our theoretical analysis is complemented by computer simulations, which demonstrate in particular that sparse input patterns improve the classification capability of sign-constrained perceptrons.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (12): 2994–3008.
Published: 01 December 2006
Abstract
View article
PDF
Circuits composed of threshold gates (McCulloch-Pitts neurons, or perceptrons) are simplified models of neural circuits with the advantage that they are theoretically more tractable than their biological counterparts. However, when such threshold circuits are designed to perform a specific computational task, they usually differ in one important respect from computations in the brain: they require very high activity. On average every second threshold gate fires (sets a 1 as output) during a computation. By contrast, the activity of neurons in the brain is much sparser, with only about 1% of neurons firing. This mismatch between threshold and neuronal circuits is due to the particular complexity measures (circuit size and circuit depth) that have been minimized in previous threshold circuit constructions. In this letter, we investigate a new complexity measure for threshold circuits, energy complexity, whose minimization yields computations with sparse activity. We prove that all computations by threshold circuits of polynomial size with entropy O (log n ) can be restructured so that their energy complexity is reduced to a level near the entropy of circuit states. This entropy of circuit states is a novel circuit complexity measure, which is of interest not only in the context of threshold circuits but for circuit complexity in general. As an example of how this measure can be applied, we show that any polynomial size threshold circuit with entropy O (log n ) can be simulated by a polynomial size threshold circuit of depth 3. Our results demonstrate that the structure of circuits that result from a minimization of their energy complexity is quite different from the structure that results from a minimization of previously considered complexity measures, and potentially closer to the structure of neural circuits in the nervous system. In particular, different pathways are activated in these circuits for different classes of inputs. This letter shows that such circuits with sparse activity have a surprisingly large computational power.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (11): 2337–2382.
Published: 01 November 2005
Abstract
View article
PDF
Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-dependent plasticity (STDP) to implement a given transformation F . We consider a supervised learning paradigm where during training, the output of the neuron is clamped to the target signal (teacher forcing). The well-known perceptron convergence theorem asserts the convergence of a simple supervised learning algorithm for drastically simplified neuron models (McCulloch-Pitts neurons). We show that in contrast to the perceptron convergence theorem, no theoretical guarantee can be given for the convergence of STDP with teacher forcing that holds for arbitrary input spike patterns. On the other hand, we prove that average case versions of the perceptron convergence theorem hold for STDP in the case of uncorrelated and correlated Poisson input spike trains and simple models for spiking neurons. For a wide class of cross-correlation functions of the input spike trains, the resulting necessary and sufficient condition can be formulated in terms of linear separability, analogously as the well-known condition of learnability by perceptrons. However, the linear separability criterion has to be applied here to the columns of the correlation matrix of the Poisson input. We demonstrate through extensive computer simulations that the theoretically predicted convergence of STDP with teacher forcing also holds for more realistic models for neurons, dynamic synapses, and more general input distributions. In addition, we show through computer simulations that these positive learning results hold not only for the common interpretation of STDP, where STDP changes the weights of synapses, but also for a more realistic interpretation suggested by experimental data where STDP modulates the initial release probability of dynamic synapses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (8): 1715–1738.
Published: 01 August 2005
Abstract
View article
PDF
How can complex movements that take hundreds of milliseconds be generated by stereotypical neural microcircuits consisting of spiking neurons with a much faster dynamics? We show that linear readouts from generic neural microcircuit models can be trained to generate basic arm movements. Such movement generation is independent of the arm model used and the type of feedback that the circuit receives. We demonstrate this by considering two different models of a two-jointed arm, a standard model from robotics and a standard model from biology, that each generates different kinds of feedback. Feedback that arrives with biologically realistic delays of 50 to 280 ms turns out to give rise to the best performance. If a feedback with such desirable delay is not available, the neural microcircuit model also achieves good performance if it uses internally generated estimates of such feedback. Existing methods for movement generation in robotics that take the particular dynamics of sensors and actuators into account (embodiment of motor systems) are taken one step further with this approach, which provides methods for also using the embodiment of motion generation circuitry, that is, the inherent dynamics and spatial structure of neural circuits, for the generation of movement.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (11): 2531–2560.
Published: 01 November 2002
Abstract
View article
PDF
A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computational model for real-time computing on time-varying input that provides an alternative to paradigms based on Turing machines or attractor neural networks. It does not require a task-dependent construction of neural circuits. Instead, it is based on principles of high-dimensional dynamical systems in combination with statistical learning theory and can be implemented on generic evolved or found recurrent circuitry. It is shown that the inherent transient dynamics of the high-dimensional dynamical system formed by a sufficiently large and heterogeneous neural circuit may serve as universal analog fading memory. Readout neurons can learn to extract in real time from the current state of such recurrent neural circuit information about current and past inputs that may be needed for diverse tasks. Stable internal states are not required for giving a stable output, since transient internal states can be transformed by readout neurons into stable target outputs due to the high dimensionality of the dynamical system. Our approach is based on a rigorous computational model, the liquid state machine, that, unlike Turing machines, does not require sequential transitions between well-defined discrete internal states. It is supported, as the Turing machine is, by rigorous mathematical results that predict universal computational power under idealized conditions, but for the biologically more realistic scenario of real-time processing of time-varying inputs. Our approach provides new perspectives for the interpretation of neural coding, the design of experiments and data analysis in neurophysiology, and the solution of problems in robotics and neurotechnology.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (11): 2477–2494.
Published: 01 November 2001
Abstract
View article
PDF
Experimental data have shown that synapses are heterogeneous: different synapses respond with different sequences of amplitudes of postsynaptic responses to the same spike train. Neither the role of synaptic dynamics itself nor the role of the heterogeneity of synaptic dynamics for computations in neural circuits is well understood. We present in this article two computational methods that make it feasible to compute for a given synapse with known synaptic parameters the spike train that is optimally fitted to the synapse in a certain sense. With the help of these methods, one can compute, for example, the temporal pattern of a spike train (with a given number of spikes) that produces the largest sum of postsynaptic responses for a specific synapse. Several other applications are also discussed. To our surprise, we find that most of these optimally fitted spike trains match common firing patterns of specific types of neurons that are discussed in the literature. Hence, our analysis provides a possible functional explanation for the experimentally observed regularity in the combination of specific types of synapses with specific types of neurons in neural circuits.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (11): 2519–2535.
Published: 01 November 2000
Abstract
View article
PDF
This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows that winner-take-all is a surprisingly powerful computational module in comparison with threshold gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates. We prove an optimal quadratic lower bound for computing winner-takeall in any feedforward circuit consisting of threshold gates. In addition we show that arbitrary continuous functions can be approximated by circuits employing a single soft winner-take-all gate as their only nonlinear operation. Our theoretical analysis also provides answers to two basic questions raised by neurophysiologists in view of the well-known asymmetry between excitatory and inhibitory connections in cortical circuits: how much computational power of neural networks is lost if only positive weights are employed in weighted sums and how much adaptive capability is lost if only the positive weights are subject to plasticity.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (8): 1743–1772.
Published: 01 August 2000
Abstract
View article
PDF
Experimental data show that biological synapses behave quite differently from the symbolic synapses in all common artificial neural network models. Biological synapses are dynamic; their “weight” changes on a short timescale by several hundred percent in dependence of the past input to the synapse. In this article we address the question how this inherent synaptic dynamics (which should not be confused with long term learning ) affects the computational power of a neural network. In particular, we analyze computations on temporal and spatiotemporal patterns, and we give a complete mathematical characterization of all filters that can be approximated by feedforward neural networks with dynamic synapses. It turns out that even with just a single hidden layer, such networks can approximate a very rich class of nonlinear filters: all filters that can be characterized by Volterra series. This result is robust with regard to various changes in the model for synaptic dynamics. Our characterization result provides for all nonlinear filters that are approximable by Volterra series a new complexity hierarchy related to the cost of implementing such filters in neural systems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (7): 1679–1704.
Published: 01 July 2000
Abstract
View article
PDF
We investigate through theoretical analysis and computer simulations the consequences of unreliable synapses for fast analog computations in networks of spiking neurons, with analog variables encoded by the current firing activities of pools of spiking neurons. Our results suggest a possible functional role for the well-established unreliability of synaptic transmission on the network level. We also investigate computations on time series and Hebbian learning in this context of space-rate coding in networks of spiking neurons with unreliable synapses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (4): 903–917.
Published: 15 May 1999
Abstract
View article
PDF
In most neural network models, synapses are treated as static weights that change only with the slow time scales of learning. It is well known, however, that synapses are highly dynamic and show use-dependent plasticity over a wide range of time scales. Moreover, synaptic transmission is an inherently stochastic process: a spike arriving at a presynaptic terminal triggers the release of a vesicle of neurotransmitter from a release site with a probability that can be much less than one. We consider a simple model for dynamic stochastic synapses that can easily be integrated into common models for networks of integrate-andfire neurons (spiking neurons). The parameters of this model have direct interpretations in terms of synaptic physiology. We investigate the consequences of the model for computing with individual spikes and demonstrate through rigorous theoretical results that the computational power of the network is increased through the use of dynamic synapses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (3): 771–782.
Published: 01 April 1999
Abstract
View article
PDF
We consider recurrent analog neural nets where the output of each gate is subject to gaussian noise or any other common noise distribution that is nonzero on a sufficiently large part of the state-space. We show that many regular languages cannot be recognized by networks of this type, and we give a precise characterization of languages that can be recognized. This result implies severe constraints on possibilities for constructing recurrent analog neural nets that are robust against realistic types of analog noise. On the other hand, we present a method for constructing feedfor-ward analog neural nets that are robust with regard to analog noise of this type.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (5): 1071–1095.
Published: 01 July 1998
Abstract
View article
PDF
We introduce a model for analog computation with discrete time in the presence of analog noise that is flexible enough to cover the most important concrete cases, such as noisy analog neural nets and networks of spiking neurons. This model subsumes the classical model for digital computation in the presence of noise. We show that the presence of arbitrarily small amounts of analog noise reduces the power of analog computational models to that of finite automata, and we also prove a new type of upper bound for the VC-dimension of computational models with analog noise.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1997) 9 (2): 279–304.
Published: 15 February 1997
Abstract
View article
PDF
We show that networks of relatively realistic mathematical models for biological neurons in principle can simulate arbitrary feedforward sigmoidal neural nets in a way that has previously not been considered. This new approach is based on temporal coding by single spikes (respectively by the timing of synchronous firing in pools of neurons) rather than on the traditional interpretation of analog variables in terms of firing rates. The resulting new simulation is substantially faster and hence more consistent with experimental results about the maximal speed of information processing in cortical neural systems. As a consequence we can show that networks of noisy spiking neurons are “universal approximators” in the sense that they can approximate with regard to temporal coding any given continuous function of several variables. This result holds for a fairly large class of schemes for coding analog variables by firing times of spiking neurons. This new proposal for the possible organization of computations in networks of spiking neurons systems has some interesting consequences for the type of learning rules that would be needed to explain the self-organization of such networks. Finally, the fast and noise-robust implementation of sigmoidal neural nets by temporal coding points to possible new ways of implementing feedforward and recurrent sigmoidal neural nets with pulse stream VLSI.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (1): 1–40.
Published: 01 January 1996
Abstract
View article
PDF
We investigate the computational power of a formal model for networks of spiking neurons. It is shown that simple operations on phase differences between spike-trains provide a very powerful computational tool that can in principle be used to carry out highly complex computations on a small network of spiking neurons. We construct networks of spiking neurons that simulate arbitrary threshold circuits, Turing machines, and a certain type of random access machines with real valued inputs. We also show that relatively weak basic assumptions about the response and threshold functions of the spiking neurons are sufficient to employ them for such computations.
1