Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Xiangyu Chang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (12): 3353–3380.
Published: 01 December 2017
Abstract
View article
PDF
This letter aims at refined error analysis for binary classification using support vector machine (SVM) with gaussian kernel and convex loss. Our first result shows that for some loss functions, such as the truncated quadratic loss and quadratic loss, SVM with gaussian kernel can reach the almost optimal learning rate provided the regression function is smooth. Our second result shows that for a large number of loss functions, under some Tsybakov noise assumption, if the regression function is infinitely smooth, then SVM with gaussian kernel can achieve the learning rate of order , where is the number of samples.