Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Xinqi Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (8): 1531–1562.
Published: 01 August 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Sparsity is a desirable property in many nonnegative matrix factorization (NMF) applications. Although some level of sparseness of NMF solutions can be achieved by using regularization, the resulting sparsity depends highly on the regularization parameter to be valued in an ad hoc way. In this letter we formulate sparse NMF as a mixed-integer optimization problem with sparsity as binary constraints. A discrete-time projection neural network is developed for solving the formulated problem. Sufficient conditions for its stability and convergence are analytically characterized by using Lyapunov's method. Experimental results on sparse feature extraction are discussed to substantiate the superiority of this approach to extracting highly sparse features.