Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Yang Qi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2025) 37 (3): 481–521.
Published: 14 February 2025
FIGURES
| View all 12
Abstract
View articletitled, Toward a Free-Response Paradigm of Decision Making in Spiking Neural Networks
View
PDF
for article titled, Toward a Free-Response Paradigm of Decision Making in Spiking Neural Networks
Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes. Here, we introduce a theory of decision making in SNNs by untangling the interplay between signal and noise. Under this theory, we introduce a new learning objective that trains an SNN not only to make the correct decisions but also to shape its confidence. Numerical experiments demonstrate that SNNs trained in this way exhibit improved confidence expression, reduced trial-to-trial variability, and shorter latency to reach the desired accuracy. We then introduce a stopping policy that can stop inference in a way that further enhances the time efficiency of SNNs. The stopping time can serve as an indicator to whether a decision is correct, akin to the reaction time in animal behavior experiments. By integrating stochasticity into decision making, this study opens up new possibilities to explore the capabilities of SNNs and advance SNNs and their applications in complex decision-making scenarios where model performance is limited.
Journal Articles
Self-Organization of Nonlinearly Coupled Neural Fluctuations Into Synergistic Population Codes
Open AccessPublisher: Journals Gateway
Neural Computation (2023) 35 (11): 1820–1849.
Published: 10 October 2023
FIGURES
| View all 6
Abstract
View articletitled, Self-Organization of Nonlinearly Coupled Neural Fluctuations Into Synergistic Population Codes
View
PDF
for article titled, Self-Organization of Nonlinearly Coupled Neural Fluctuations Into Synergistic Population Codes
Neural activity in the brain exhibits correlated fluctuations that may strongly influence the properties of neural population coding. However, how such correlated neural fluctuations may arise from the intrinsic neural circuit dynamics and subsequently affect the computational properties of neural population activity remains poorly understood. The main difficulty lies in resolving the nonlinear coupling between correlated fluctuations with the overall dynamics of the system. In this study, we investigate the emergence of synergistic neural population codes from the intrinsic dynamics of correlated neural fluctuations in a neural circuit model capturing realistic nonlinear noise coupling of spiking neurons. We show that a rich repertoire of spatial correlation patterns naturally emerges in a bump attractor network and further reveals the dynamical regime under which the interplay between differential and noise correlations leads to synergistic codes. Moreover, we find that negative correlations may induce stable bound states between two bumps, a phenomenon previously unobserved in firing rate models. These noise-induced effects of bump attractors lead to a number of computational advantages including enhanced working memory capacity and efficient spatiotemporal multiplexing and can account for a range of cognitive and behavioral phenomena related to working memory. This study offers a dynamical approach to investigating realistic correlated neural fluctuations and insights to their roles in cortical computations.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (2): 255–280.
Published: 01 February 2015
FIGURES
| View all 41
Abstract
View articletitled, Subdiffusive Dynamics of Bump Attractors: Mechanisms and Functional Roles
View
PDF
for article titled, Subdiffusive Dynamics of Bump Attractors: Mechanisms and Functional Roles
Bump attractors are localized activity patterns that can self-sustain after stimulus presentation, and they are regarded as the neural substrate for a host of perceptual and cognitive processes. One of the characteristic features of bump attractors is that they are neutrally stable, so that noisy inputs cause them to drift away from their initial locations, severely impairing the accuracy of bump location-dependent neural coding. Previous modeling studies of such noise-induced drifting activity of bump attractors have focused on normal diffusive dynamics, often with an assumption that noisy inputs are uncorrelated. Here we show that long-range temporal correlations and spatial correlations in neural inputs generated by multiple interacting bumps cause them to drift in an anomalous subdiffusive way. This mechanism for generating subdiffusive dynamics of bump attractors is further analyzed based on a generalized Langevin equation. We demonstrate that subdiffusive dynamics can significantly improve the coding accuracy of bump attractors, since the variance of the bump displacement increases sublinearly over time and is much smaller than that of normal diffusion. Furthermore, we reanalyze existing psychophysical data concerning the spread of recalled cue position in spatial working memory tasks and show that its variance increases sublinearly with time, consistent with subdiffusive dynamics of bump attractors. Based on the probability density function of bump position, we also show that the subdiffusive dynamics result in a long-tailed decay of firing rate, greatly extending the duration of persistent activity.