Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Yashar Ahmadian
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (8): 1994–2037.
Published: 01 August 2013
FIGURES
| View All (51)
Abstract
View article
PDF
We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the balanced network, which yields only linear behavior. We more exhaustively analyze the two-dimensional case of one excitatory and one inhibitory population. We show that in this case, dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for supersaturation, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (1): 1–45.
Published: 01 January 2011
FIGURES
| View All (32)
Abstract
View article
PDF
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (1): 46–96.
Published: 01 January 2011
FIGURES
| View All (29)
Abstract
View article
PDF
Stimulus reconstruction or decoding methods provide an important tool for understanding how sensory and motor information is represented in neural activity. We discuss Bayesian decoding methods based on an encoding generalized linear model (GLM) that accurately describes how stimuli are transformed into the spike trains of a group of neurons. The form of the GLM likelihood ensures that the posterior distribution over the stimuli that caused an observed set of spike trains is log concave so long as the prior is. This allows the maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization algorithms. Unfortunately, the MAP estimate can have a relatively large average error when the posterior is highly nongaussian. Here we compare several Markov chain Monte Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators involving posterior expectations (conditional on model parameters). An efficient version of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC methods for gaussian priors. When the prior distribution has sharp edges and corners, on the other hand, the “hit-and-run” algorithm performed better than other MCMC methods. Using these algorithms, we show that for this latter class of priors, the posterior mean estimate can have a considerably lower average error than MAP, whereas for gaussian priors, the two estimators have roughly equal efficiency. We also address the application of MCMC methods for extracting nonmarginal properties of the posterior distribution. For example, by using MCMC to calculate the mutual information between the stimulus and response, we verify the validity of a computationally efficient Laplace approximation to this quantity for gaussian priors in a wide range of model parameters; this makes direct model-based computation of the mutual information tractable even in the case of large observed neural populations, where methods based on binning the spike train fail. Finally, we consider the effect of uncertainty in the GLM parameters on the posterior estimators.