Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Yee Whye Teh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (7): 1527–1554.
Published: 01 July 2006
Abstract
View article
PDF
We show how to use “complementary priors” to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (1): 197–221.
Published: 01 January 2004
Abstract
View article
PDF
Belief propagation (BP) on cyclic graphs is an efficient algorithm for computing approximate marginal probability distributions over single nodes and neighboring nodes in the graph. However, it does not prescribe a way to compute joint distributions over pairs of distant nodes in the graph. In this article, we propose two new algorithms for approximating these pairwise probabilities, based on the linear response theorem. The first is a propagation algorithm that is shown to converge if BP converges to a stable fixed point. The second algorithm is based on matrix inversion. Applying these ideas to gaussian random fields, we derive a propagation algorithm for computing the inverse of a matrix.