Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Yimin Nie
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (10): 2247–2293.
Published: 01 October 2014
FIGURES
| View All (238)
Abstract
View article
PDF
The investigation of neural interactions is crucial for understanding information processing in the brain. Recently an analysis method based on information geometry (IG) has gained increased attention, and the property of the pairwise IG measure has been studied extensively in relation to the two-neuron interaction. However, little is known about the property of IG measures involving more neuronal interactions. In this study, we systematically investigated the influence of external inputs and the asymmetry of connections on the IG measures in cases ranging from 1-neuron to 10-neuron interactions. First, the analytical relationship between the IG measures and external inputs was derived for a network of 10 neurons with uniform connections. Our results confirmed that the single and pairwise IG measures were good estimators of the mean background input and of the sum of the connection weights, respectively. For the IG measures involving 3 to 10 neuronal interactions, we found that the influence of external inputs was highly nonlinear. Second, by computer simulation, we extended our analytical results to asymmetric connections. For a network of 10 neurons, the simulation showed that the behavior of the IG measures in relation to external inputs was similar to the analytical solution obtained for a uniformly connected network. When the network size was increased to 1000 neurons, the influence of external inputs almost disappeared. This result suggests that all IG measures from 1-neuron to 10-neuron interactions are robust against the influence of external inputs. In addition, we investigated how the strength of asymmetry influenced the IG measures. Computer simulation of a 1000-neuron network showed that all the IG measures were robust against the modulation of the asymmetry of connections. Our results provide further support for an information-geometric approach and will provide useful insights when these IG measures are applied to real experimental spike data.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (12): 3213–3245.
Published: 01 December 2012
FIGURES
| View All (65)
Abstract
View article
PDF
The brain processes information in a highly parallel manner. Determination of the relationship between neural spikes and synaptic connections plays a key role in the analysis of electrophysiological data. Information geometry (IG) has been proposed as a powerful analysis tool for multiple spike data, providing useful insights into the statistical interactions within a population of neurons. Previous work has demonstrated that IG measures can be used to infer the connection weight between two neurons in a neural network. This property is useful in neuroscience because it provides a way to estimate learning-induced changes in synaptic strengths from extracellular neuronal recordings. A previous study has shown, however, that this property would hold only when inputs to neurons are not correlated. Since neurons in the brain often receive common inputs, this would hinder the application of the IG method to real data. We investigated the two-neuron-IG measures in higher-order log-linear models to overcome this limitation. First, we mathematically showed that the estimation of uniformly connected synaptic weight can be improved by taking into account higher-order log-linear models. Second, we numerically showed that the estimation can be improved for more general asymmetrically connected networks. Considering the estimated number of the synaptic connections in the brain, we showed that the two-neuron IG measure calculated by the fourth- or fifth-order log-linear model would provide an accurate estimation of connection strength within approximately a 10% error. These studies suggest that the two-neuron IG measure with higher-order log-linear expansion is a robust estimator of connection weight even under correlated inputs, providing a useful analytical tool for real multineuronal spike data.