Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Yinong Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (4): 731–755.
Published: 01 May 1996
Abstract
View article
PDF
How do multiple feature maps that coexist in the same region of cerebral cortex align with each other? We hypothesize that such alignment is governed by temporal correlations: features in one map that are temporally correlated with those in another come to occupy the same spatial locations in cortex over time. To examine the feasibility of this hypothesis and to establish some of its detailed implications, we studied a multilayered, closed-loop computational model of primary sensorimotor cortex. A simulated arm moving in three dimensions formed the external environment for the model cortical regions. Coexisting proprioceptive and motor maps formed and generally aligned in a fashion consistent with the temporal correlation hypothesis. For example, in simulated proprioceptive sensory cortex the map of elements responding strongly to stretch of a particular muscle matched the map of tension sensitivity in antagonist muscles. In simulated primary motor cortex the map of elements responding strongly to increased tension in specific muscles matched the map of output elements for the same muscles. These computational results suggest specific experimental measurements that can support or refute the temporal correlation hypothesis for map alignments.