Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Yunpeng Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2019) 31 (1): 156–175.
Published: 01 January 2019
FIGURES
Abstract
View article
PDF
Modeling videos and image sets by linear subspaces has achieved great success in various visual recognition tasks. However, subspaces constructed from visual data are always notoriously embedded in a high-dimensional ambient space, which limits the applicability of existing techniques. This letter explores the possibility of proposing a geometry-aware framework for constructing lower-dimensional subspaces with maximum discriminative power from high-dimensional subspaces in the supervised scenario. In particular, we make use of Riemannian geometry and optimization techniques on matrix manifolds to learn an orthogonal projection, which shows that the learning process can be formulated as an unconstrained optimization problem on a Grassmann manifold. With this natural geometry, any metric on the Grassmann manifold can theoretically be used in our model. Experimental evaluations on several data sets show that our approach results in significantly higher accuracy than other state-of-the-art algorithms.