Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Zafeirios Fountas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (12): 1881–1909.
Published: 07 November 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Backpropagation has rapidly become the workhorse credit assignment algorithm for modern deep learning methods. Recently, modified forms of predictive coding (PC), an algorithm with origins in computational neuroscience, have been shown to result in approximately or exactly equal parameter updates to those under backpropagation. Due to this connection, it has been suggested that PC can act as an alternative to backpropagation with desirable properties that may facilitate implementation in neuromorphic systems. Here, we explore these claims using the different contemporary PC variants proposed in the literature. We obtain time complexity bounds for these PC variants, which we show are lower bounded by backpropagation. We also present key properties of these variants that have implications for neurobiological plausibility and their interpretations, particularly from the perspective of standard PC as a variational Bayes algorithm for latent probabilistic models. Our findings shed new light on the connection between the two learning frameworks and suggest that in its current forms, PC may have more limited potential as a direct replacement of backpropagation than previously envisioned.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (7): 1501–1544.
Published: 16 June 2022
Abstract
View article
PDF
Human perception and experience of time are strongly influenced by ongoing stimulation, memory of past experiences, and required task context. When paying attention to time, time experience seems to expand; when distracted, it seems to contract. When considering time based on memory, the experience may be different than what is in the moment, exemplified by sayings like “time flies when you're having fun.” Experience of time also depends on the content of perceptual experience—rapidly changing or complex perceptual scenes seem longer in duration than less dynamic ones. The complexity of interactions among attention, memory, and perceptual stimulation is a likely reason that an overarching theory of time perception has been difficult to achieve. Here, we introduce a model of perceptual processing and episodic memory that makes use of hierarchical predictive coding, short-term plasticity, spatiotemporal attention, and episodic memory formation and recall, and apply this model to the problem of human time perception. In an experiment with approximately 13,000 human participants, we investigated the effects of memory, cognitive load, and stimulus content on duration reports of dynamic natural scenes up to about 1 minute long. Using our model to generate duration estimates, we compared human and model performance. Model-based estimates replicated key qualitative biases, including differences by cognitive load (attention), scene type (stimulation), and whether the judgment was made based on current or remembered experience (memory). Our work provides a comprehensive model of human time perception and a foundation for exploring the computational basis of episodic memory within a hierarchical predictive coding framework.
Includes: Supplementary data