Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Zhibin Pan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (4): 1107–1121.
Published: 01 April 2013
Abstract
View article
PDF
In this letter, we consider a density-level detection (DLD) problem by a coefficient-based classification framework with -regularizer and data-dependent hypothesis spaces. Although the data-dependent characteristic of the algorithm provides flexibility and adaptivity for DLD, it leads to difficulty in generalization error analysis. To overcome this difficulty, an error decomposition is introduced from an established classification framework. On the basis of this decomposition, the estimate of the learning rate is obtained by using Rademacher average and stepping-stone techniques. In particular, the estimate is independent of the capacity assumption used in the previous literature.