Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Zhihui Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (2): 526–545.
Published: 01 February 2018
FIGURES
| View All (7)
Abstract
View article
PDF
In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (12): 3381–3396.
Published: 01 December 2017
FIGURES
Abstract
View article
PDF
Spectral clustering is a key research topic in the field of machine learning and data mining. Most of the existing spectral clustering algorithms are built on gaussian Laplacian matrices, which is sensitive to parameters. We propose a novel parameter-free distance-consistent locally linear embedding. The proposed distance-consistent LLE can promise that edges between closer data points are heavier. We also propose a novel improved spectral clustering via embedded label propagation. Our algorithm is built on two advancements of the state of the art. First is label propagation, which propagates a node's labels to neighboring nodes according to their proximity. We perform standard spectral clustering on original data and assign each cluster with -nearest data points and then we propagate labels through dense unlabeled data regions. Second is manifold learning, which has been widely used for its capacity to leverage the manifold structure of data points. Extensive experiments on various data sets validate the superiority of the proposed algorithm compared to state-of-the-art spectral algorithms.