Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Zhixian Han
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2023) 35 (2): 249–275.
Published: 20 January 2023
FIGURES
Abstract
View article
PDF
In our previous study (Han & Sereno, 2022a), we found that two artificial cortical visual pathways trained for either identity or space actively retain information about both identity and space independently and differently. We also found that this independently and differently retained information about identity and space in two separate pathways may be necessary to accurately and optimally recognize and localize objects. One limitation of our previous study was that there was only one object in each visual image, whereas in reality, there may be multiple objects in a scene. In this study, we find we are able to generalize our findings to object recognition and localization tasks where multiple objects are present in each visual image. We constrain the binding problem by training the identity network pathway to report the identities of objects in a given order according to the relative spatial relationships between the objects, given that most visual cortical areas including high-level ventral steam areas retain spatial information. Under these conditions, we find that the artificial neural networks with two pathways for identity and space have better performance in multiple-objects recognition and localization tasks (higher average testing accuracy, lower testing accuracy variance, less training time) than the artificial neural networks with a single pathway. We also find that the required number of training samples and the required training time increase quickly, and potentially exponentially, when the number of objects in each image increases, and we suggest that binding information from multiple objects simultaneously within any network (cortical area) induces conflict or competition and may be part of the reason why our brain has limited attentional and visual working memory capacities.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (1): 138–171.
Published: 01 January 2022
Abstract
View article
PDF
Although in conventional models of cortical processing, object recognition and spatial properties are processed separately in ventral and dorsal cortical visual pathways respectively, some recent studies have shown that representations associated with both objects' identity (of shape) and space are present in both visual pathways. However, it is still unclear whether the presence of identity and spatial properties in both pathways have functional roles. In our study, we have tried to answer this question through computational modeling. Our simulation results show that both a model ventral and dorsal pathway, separately trained to do object and spatial recognition, respectively, each actively retained information about both identity and space. In addition, we show that these networks retained different amounts and kinds of identity and spatial information. As a result, our modeling suggests that two separate cortical visual pathways for identity and space (1) actively retain information about both identity and space (2) retain information about identity and space differently and (3) that this differently retained information about identity and space in the two pathways may be necessary to accurately and optimally recognize and localize objects. Further, modeling results suggests these findings are robust and do not strongly depend on the specific structures of the neural networks.
Includes: Supplementary data