Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Zoubin Ghahramani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (5): 1213–1260.
Published: 01 May 2013
FIGURES
| View All (6)
Abstract
View article
PDF
We offer a solution to the problem of efficiently translating algorithms between different types of discrete statistical model. We investigate the expressive power of three classes of model—those with binary variables, with pairwise factors, and with planar topology—as well as their four intersections. We formalize a notion of “simple reduction” for the problem of inferring marginal probabilities and consider whether it is possible to “simply reduce” marginal inference from general discrete factor graphs to factor graphs in each of these seven subclasses. We characterize the reducibility of each class, showing in particular that the class of binary pairwise factor graphs is able to simply reduce only positive models. We also exhibit a continuous “spectral reduction” based on polynomial interpolation, which overcomes this limitation. Experiments assess the performance of standard approximate inference algorithms on the outputs of our reductions.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (9): 2109–2128.
Published: 01 September 2000
Abstract
View article
PDF
We present a split-and-merge expectation-maximization (SMEM) algorithm to overcome the local maxima problem in parameter estimation of finite mixture models. In the case of mixture models, local maxima often involve having too many components of a mixture model in one part of the space and too few in another, widely separated part of the space. To escape from such configurations, we repeatedly perform simultaneous split-and-merge operations using a new criterion for efficiently selecting the split-and-merge candidates. We apply the proposed algorithm to the training of gaussian mixtures and mixtures of factor analyzers using synthetic and real data and show the effectiveness of using the split- and-merge operations to improve the likelihood of both the training data and of held-out test data. We also show the practical usefulness of the proposed algorithm by applying it to image compression and pattern recognition problems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (4): 831–864.
Published: 01 April 2000
Abstract
View article
PDF
We introduce a new statistical model for time series that iteratively segments data into regimes with approximately linear dynamics and learns the parameters of each of these linear regimes. This model combines and generalizes two of the most widely used stochastic time-series models—hidden Markov models and linear dynamical systems—and is closely related to models that are widely used in the control and econometrics literatures. It can also be derived by extending the mixture of experts neural network (Jacobs, Jordan, Nowlan, & Hinton, 1991) to its fully dynamical version, in which both expert and gating networks are recurrent. Inferring the posterior probabilities of the hidden states of this model is computationally intractable, and therefore the exact expectation maximization (EM) algorithm cannot be applied. However, we present a variational approximation that maximizes a lower bound on the log-likelihood and makes use of both the forward and backward recursions for hidden Markov models and the Kalman filter recursions for linear dynamical systems. We tested the algorithm on artificial data sets and a natural data set of respiration force from a patient with sleep apnea. The results suggest that variational approximations are a viable method for inference and learning in switching state-space models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (2): 305–345.
Published: 15 February 1999
Abstract
View article
PDF
Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model. We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models.