The emerging area of dynamic brain network analysis has gained considerable attention in recent years. However, development of multivariate statistical frameworks that allow for examining the associations between phenotypic traits and dynamic patterns of system-level properties of the brain, and drawing statistical inference about such associations, has largely lagged behind. To address this need we developed a mixed-modeling framework that allows for assessing the relationship between any desired phenotype and dynamic patterns of whole-brain connectivity and topology. This novel framework also allows for simulating dynamic brain networks with respect to desired covariates. Unlike current tools, which largely use data-driven methods, our model-based method enables aligning neuroscientific hypotheses with the analytic approach. We demonstrate the utility of this model in identifying the relationship between fluid intelligence and dynamic brain networks by using resting-state fMRI (rfMRI) data from 200 participants in the Human Connectome Project (HCP) study. We also demonstrate the utility of this model to simulate dynamic brain networks at both group and individual levels. To our knowledge, this approach provides the first model-based statistical method for examining dynamic patterns of system-level properties of the brain and their relationships to phenotypic traits as well as simulating dynamic brain networks.

In recent years, a growing body of studies have aimed at analyzing the brain as a complex dynamic system by using various neuroimaging data. This has opened new avenues to answer compelling questions about the brain function in health and disease. However, methods that allow for providing statistical inference about how the complex interactions of the brain are associated with desired phenotypes are to be developed for a more profound insight. This study introduces a promising regression-based model to relate dynamic brain networks to desired phenotypes and provide statistical inference. Moreover, it can be used for simulating dynamic brain networks with respect to desired phenotypes at the group and individual levels.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Vince Calhoun

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Supplementary data