Spontaneous brain activity changes across states of consciousness. A particular consciousness-mediated configuration is the anticorrelations between the default mode network and other regions. What this antagonistic organization implies about consciousness to date remains inconclusive. In this Perspective Article, we propose that anticorrelations are the physiological expression of the concept of segregation, namely the brain’s capacity to show selectivity in the way areas will be functionally connected. We postulate that this effect is mediated by the process of neural inhibition, by regulating global and local inhibitory activity. While recognizing that this effect can also result from other mechanisms, neural inhibition helps the understanding of how network metastability is affected after disrupting local and global neural balance. In combination with relevant theories of consciousness, we suggest that anticorrelations are a physiological prior that can work as a marker of preserved consciousness. We predict that if the brain is not in a state to host anticorrelations, then most likely the individual does not entertain subjective experience. We believe that this link between anticorrelations and the underlying physiology will help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected.

The fMRI resting paradigm can quantify brain function by surpassing communication and sophisticated setups, hence helping to infer consciousness in individuals who are unable to communicate with their environment. A particular consciousness-mediated rsfMRI configuration is that of functional anticorrelations, that is, the antagonistic relationship between a specific set of brain regions. We suggest that anticorrelations are a key physiological prior, without which consciousness cannot be supported, because the brain cannot segregate how regions get connected. We postulate that segregation is possible thanks to neural inhibition, by regulating global and local inhibitory activity. We believe that the link between anticorrelations and the underlying physiology can help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating its disorders.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Equal contribution.

Handling Editor: Olaf Sporns

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.