Ensembles of neurons are thought to be coactive when participating in brain computations. However, it is unclear what principles determine whether an ensemble remains localised within a single brain region, or spans multiple brain regions. To address this, we analysed electrophysiological neural population data from hundreds of neurons recorded simultaneously across nine brain regions in awake mice. At fast subsecond timescales, spike count correlations between pairs of neurons in the same brain region were stronger than for pairs of neurons spread across different brain regions. In contrast at slower timescales, within- and between-region spike count correlations were similar. Correlations between high-firing-rate neuron pairs showed a stronger dependence on timescale than low-firing-rate neuron pairs. We applied an ensemble detection algorithm to the neural correlation data and found that at fast timescales each ensemble was mostly contained within a single brain region, whereas at slower timescales ensembles spanned multiple brain regions. These results suggest that the mouse brain may perform fast-local and slow-global computations in parallel.

In this study we analysed publicly available neural population electrophysiology data from nine brain regions in awake mice. To discover neural ensembles, we applied community detection algorithms to the spike count correlation matrices estimated from the data. We repeated the analysis at different timescales, ranging from 10 milliseconds to 3 seconds. We found that at fast timescales < 1 s, neural ensembles tended to be localised within single brain regions. In contrast at slower timescales of > 1 s, ensembles tended to include neurons spread across multiple brain regions. Most of this effect was due to high-firing-rate neurons.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Arvind Kumar

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.