Machine learning algorithms are increasingly being utilized to identify brain connectivity biomarkers linked to behavioral and clinical outcomes. However, research often prioritizes prediction accuracy at the expense of biological interpretability and inconsistent implementation of ML methods may hinder model accuracy. To address this, our paper introduces a network-level enrichment approach, which integrates brain system organization in the context of connectome-wide statistical analysis to reveal network-level links between brain connectivity and behavior. To demonstrate the efficacy of this approach, we used linear support vector regression (LSVR) models to examine the relationship between resting-state functional connectivity networks and chronological age. We compared network-level associations based on raw LSVR weights to those produced from the forward and inverse models. Results indicated that not accounting for shared family variance inflated prediction performance, the k-best feature selection via Pearson correlation reduced accuracy and reliability, and raw LSVR model weights produced network-level associations that deviated from the significant brain systems identified by forward and inverse models. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for biological interpretation.

This content is only available as a PDF.

Author notes

Handling Editor: Andrew Zalesky

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview

Supplementary data