Brain tumors can induce pathological changes in neuronal dynamics that are reflected in functional connectivity measures. Here, we use a whole-brain modeling approach to investigate pathological alterations to neuronal activity in glioma patients. By fitting a Hopf whole-brain model to empirical functional connectivity, we investigate glioma-induced changes in optimal model parameters. We observe considerable differences in neuronal dynamics between glioma patients and healthy controls, both on an individual and population-based level. In particular, model parameter estimation suggests that local tumor pathology causes changes in brain dynamics by increasing the influence of interregional interactions on global neuronal activity. Our approach demonstrates that whole-brain models provide valuable insights for understanding glioma-associated alterations in functional connectivity.

This study investigates how gliomas affect neuronal activity and connectivity using a whole-brain computational model. By fitting this model to empirical data, we compare glioma patients with healthy individuals to uncover significant differences in brain dynamics. Our findings indicate that local tumor pathology enhances the influence of interregional interactions on overall neuronal activity. This approach underscores the utility of whole-brain computational models in revealing the complex alterations in functional connectivity associated with gliomas, advancing our understanding of their impact on brain function.

This content is only available as a PDF.

Author notes

Competing Interests: The authors have declared that no competing interests exist.

Handling Editor: Olaf Sporns

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Supplementary data