Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Agustin Ibañez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (2): 632–660.
Published: 30 June 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity, and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supported by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behavior with different levels of abstraction: a phenomenological Stuart–Landau model and an exact mean-field model. The fit of these models informed by structural- to functional-weighted MRI signal (T1w/T2w) allowed us to explore the implication of the inclusion of heterogeneities for modeling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts on brain atrophy/structure (Alzheimer’s patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered, showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation. Author Summary Significant progress has been made in understanding the effects of regional heterogeneity on whole-brain dynamics. With imaging technologies, the number of high-resolution reference maps of brain structure and function has been increased, and whole-brain computational models have provided a suitable avenue to investigate the mechanisms supporting the relations between these maps and whole-brain dynamics. Here, we investigate the role of the heterogeneities when synchronous behavior is present in brain dynamics, which we could represent by models capable of oscillating in the presence of a Hopf bifurcation. We found that models with oscillations more faithfully reproduce empirical properties when structural and functional regional heterogeneities are considered, showing that both phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (1): 322–350.
Published: 01 January 2023
FIGURES
| View All (10)
Abstract
View article
PDF
Characterizing a particular neurodegenerative condition against others possible diseases remains a challenge along clinical, biomarker, and neuroscientific levels. This is the particular case of frontotemporal dementia (FTD) variants, where their specific characterization requires high levels of expertise and multidisciplinary teams to subtly distinguish among similar physiopathological processes. Here, we used a computational approach of multimodal brain networks to address simultaneous multiclass classification of 298 subjects (one group against all others), including five FTD variants: behavioral variant FTD, corticobasal syndrome, nonfluent variant primary progressive aphasia, progressive supranuclear palsy, and semantic variant primary progressive aphasia, with healthy controls. Fourteen machine learning classifiers were trained with functional and structural connectivity metrics calculated through different methods. Due to the large number of variables, dimensionality was reduced, employing statistical comparisons and progressive elimination to assess feature stability under nested cross-validation. The machine learning performance was measured through the area under the receiver operating characteristic curves, reaching 0.81 on average, with a standard deviation of 0.09. Furthermore, the contributions of demographic and cognitive data were also assessed via multifeatured classifiers. An accurate simultaneous multiclass classification of each FTD variant against other variants and controls was obtained based on the selection of an optimum set of features. The classifiers incorporating the brain’s network and cognitive assessment increased performance metrics. Multimodal classifiers evidenced specific variants’ compromise, across modalities and methods through feature importance analysis. If replicated and validated, this approach may help to support clinical decision tools aimed to detect specific affectations in the context of overlapping diseases. Author Summary The distinction of a neurodegenerative condition against multiple related diseases simultaneously, with overlapping features and high levels of heterogeneity in behavioral, clinical, and neuropathological markers, remains a challenge. Here, we combined structural and functional connectivity markers with diverse methods including graph theory and cognitive markers to perform a multiclass classification of five FTD variants. An optimum set of features was obtained through progressive feature elimination by removing redundant and uninformative variables. Our results for the simultaneous multiclass categorization of each FTD variant and healthy controls achieved a performance up to an area under the curve of 0.95. This approach can help develop clinical decision support tools to detect specific affectations in the context of overlapping neurodegenerative diseases.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (4): 1104–1124.
Published: 01 October 2022
FIGURES
| View All (5)
Abstract
View article
PDF
Psychedelic drugs show promise as safe and effective treatments for neuropsychiatric disorders, yet their mechanisms of action are not fully understood. A fundamental hypothesis is that psychedelics work by dose-dependently changing the functional hierarchy of brain dynamics, but it is unclear whether different psychedelics act similarly. Here, we investigated the changes in the brain’s functional hierarchy associated with two different psychedelics (LSD and psilocybin). Using a novel turbulence framework, we were able to determine the vorticity, that is, the local level of synchronization, that allowed us to extend the standard global time-based measure of metastability to become a local-based measure of both space and time. This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network. Overall, our findings directly support a prior hypothesis that psychedelics modulate (i.e., “compress”) the functional hierarchy and provide a quantification of these changes for two different psychedelics. Implications for therapeutic applications of psychedelics are discussed. Author Summary Significant progress has been made in understanding the effects of psychedelics on brain function. One of the main hypotheses is that psychedelics work by changing the functional hierarchy of brain dynamics in a dose-dependent manner, modulating the encoding of the precision of priors, beliefs, or assumptions in the brain. We used a novel turbulence framework to investigate the changes in the brain’s functional hierarchy associated with two different psychedelics (LSD and psilocybin). This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network.
Includes: Supplementary data