Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Amber M. Schedlbauer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (4): 1070–1093.
Published: 01 September 2019
FIGURES
| View All (7)
Abstract
View article
PDF
Author Summary The degree to which task-related functional connectivity patterns remain stable or are dynamic when people learn and remember information remains largely untested. We investigated this issue by collecting fMRI while participants performed a memory encoding and retrieval task. Our results suggested that subnetworks are dynamic and tend to fragment relative to a resting-state network partition. From these changes in connectivity, we identified a subset of “movers,” or in other words, nodes that changed their allegiance to subnetworks across all aspects of the task. These findings emphasize that memory is a dynamic process involving changes in task-related functional connectivity across the brain. Abstract Memory encoding and retrieval involve distinct interactions between multiple brain areas, yet the flexible structure of corresponding large-scale networks during such memory processing remains unclear. Using functional magnetic resonance imaging, we employed a spatiotemporal encoding and retrieval task, detecting functional community structure across the multiple components of our task. Consistent with past work, we identified a set of stable subnetworks, mostly belonging to primary motor and sensory cortices but also identified a subset of flexible hubs, mostly belonging to higher association areas. These “mover” hubs changed connectivity patterns across spatial and temporal memory encoding and retrieval, engaging in an integrative role within the network. Global encoding network and subnetwork dissimilarity predicted retrieval performance. Together, our findings emphasize the importance of flexible network allegiance among some hubs and the importance of network reconfiguration to human episodic memory.
Includes: Supplementary data