Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Andrew Zalesky
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience 1–20.
Published: 04 October 2024
Abstract
View article
PDF
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization—axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective. Author Summary Generative models of the human connectome provide insight into principles driving brain network development. However, current models do not capture axonal outgrowth, which is crucial to the formation of neural circuits. We develop a novel generative connectome model featuring dynamic axonal outgrowth, revealing the contribution of microscopic axonal guidance to the network topology and axonal geometry of macroscopic connectomes. Simple axonal outgrowth rules representing continuous chemoaffinity gradients are shown to generate complex, brain-like topologies and realistic axonal fascicle architectures. Our model is sufficiently sensitive to capture subtle interindividual differences in axonal outgrowth between healthy adults. Our results are significant because they reveal core principles that may give rise to both complex brain networks and brain-like axonal bundles, unifying neurogenesis across scales.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2024) 8 (3): 902–925.
Published: 01 October 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity–guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%–50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward. Author Summary Neuroimaging studies often encounter challenges in reliable inference of statistical maps due to limited statistical power. This article introduces TCS, a novel method that integrates anatomical connectivity data from diffusion tractography into cluster-based inference techniques. Our findings demonstrate that TCS enhances statistical power, improves the detection of spatially disjoint localized activations, and identifies the underlying network linking distant inferred active regions. By elucidating the coordinated network supporting inferred effects, TCS enables data-driven interpretation of inference results. The availability of TCS as a publicly accessible tool offers a promising avenue for future neuroimaging research to leverage anatomical connectivity for enhanced inference and interpretation.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience 1–18.
Published: 16 September 2024
Abstract
View article
PDF
Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions. Here, we consider two measures to statistically evaluate whether functional connectivity predictions capture individual effects. We revisit our previously published functional connectivity predictions for 1,000 healthy adults and provide multiple lines of evidence supporting that our predictions successfully capture subtle individual-specific variation in connectivity. While predicted individual effects are statistically significant and outperform several benchmarks, we find that effect sizes are small (i.e., 8%–11% improvement relative to group-average benchmarks). As such, initial expectations about individual prediction performance expressed by us and others may require moderation. We conclude that individual predictions can significantly outperform appropriate benchmark conditions and we provide several recommendations for future studies in this area. Future studies should statistically assess the individual prediction performance of their models using one of the measures and benchmarks provided here.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (4): 980–1006.
Published: 01 November 2020
FIGURES
| View All (5)
Abstract
View article
PDF
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Author Summary Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (2): 416–431.
Published: 01 April 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Both natural and engineered networks are often modular. Whether a network node interacts with only nodes from its own module or nodes from multiple modules provides insight into its functional role. The participation coefficient ( PC ) is typically used to measure this attribute, although its value also depends on the size and connectedness of the module it belongs to and may lead to nonintuitive identification of highly connected nodes. Here, we develop a normalized PC that reduces the influence of intramodular connectivity compared with the conventional PC . Using brain, C. elegans , airport, and simulated networks, we show that our measure of participation is not influenced by the size or connectedness of modules, while preserving conceptual and mathematical properties, of the classic formulation of PC . Unlike the conventional PC , we identify London and New York as high participators in the air traffic network and demonstrate stronger associations with working memory in human brain networks, yielding new insights into nodal participation across network modules. Author Summary It is challenging to reliably quantify how single elements (i.e., nodes) in a network are connected to different subcomponents (i.e., modules) of a network; this is important as intermodular connectivity contribute to efficient and distributed information processing. Participation coefficient ( PC ) calculates how distributed nodes are across modules. But PC is influenced by modularity algorithms that tend to favor large modules with strong intramodule connectivity, that in turn generate low PC values, even if a node has strong intermodule connectivity. We use a network randomization approach and show that by reducing the influence of intramodular connectivity, we obtain node participation results unaffected by size and connectedness of modules. This provides network scientists with new insights into the intermodular connectivity configurations of complex networks.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2019) 3 (4): 1121–1140.
Published: 01 September 2019
FIGURES
| View All (6)
Abstract
View article
PDF
Stroke is characterized by delays in the resting-state hemodynamic response, resulting in synchronization lag in neural activity between brain regions. However, the structural basis of this lag remains unclear. In this study, we used resting-state functional MRI (rs-fMRI) to characterize synchronization lag profiles between homotopic regions in 15 individuals (14 males, 1 female) with brain lesions consequent to stroke as well as a group of healthy comparison individuals. We tested whether the network communication efficiency of each individual’s structural brain network (connectome) could explain interindividual and interregional variation in synchronization lag profiles. To this end, connectomes were mapped using diffusion MRI data, and communication measures were evaluated under two schemes: shortest paths and navigation. We found that interindividual variation in synchronization lags was inversely associated with communication efficiency under both schemes. Interregional variation in lag was related to navigation efficiency and navigation distance, reflecting its dependence on both distance and structural constraints. Moreover, severity of motor deficits significantly correlated with average synchronization lag in stroke. Our results provide a structural basis for the delay of information transfer between homotopic regions inferred from rs-fMRI and provide insight into the clinical significance of structural-functional relationships in stroke individuals.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 02 (02): 259–284.
Published: 01 June 2018
FIGURES
| View All (6)
Abstract
View article
PDF
Directionality is a fundamental feature of network connections. Most structural brain networks are intrinsically directed because of the nature of chemical synapses, which comprise most neuronal connections. Because of the limitations of noninvasive imaging techniques, the directionality of connections between structurally connected regions of the human brain cannot be confirmed. Hence, connections are represented as undirected, and it is still unknown how this lack of directionality affects brain network topology. Using six directed brain networks from different species and parcellations (cat, mouse, C. elegans , and three macaque networks), we estimate the inaccuracies in network measures (degree, betweenness, clustering coefficient, path length, global efficiency, participation index, and small-worldness) associated with the removal of the directionality of connections. We employ three different methods to render directed brain networks undirected: (a) remove unidirectional connections, (b) add reciprocal connections, and (c) combine equal numbers of removed and added unidirectional connections. We quantify the extent of inaccuracy in network measures introduced through neglecting connection directionality for individual nodes and across the network. We find that the coarse division between core and peripheral nodes remains accurate for undirected networks. However, hub nodes differ considerably when directionality is neglected. Comparing the different methods to generate undirected networks from directed ones, we generally find that the addition of reciprocal connections ( false positives ) causes larger errors in graph-theoretic measures than the removal of the same number of directed connections ( false negatives ). These findings suggest that directionality plays an essential role in shaping brain networks and highlight some limitations of undirected connectomes. Author Summary Most brain networks are inherently directed because of the nature of chemical synapses, which comprise most neuronal connections. However, owing to limitations of non-invasive techniques, the human connectome is represented without directionality. To better understand the effects of directionality on graph-theoretic measures of anatomical networks, we compare brain networks across species when directionality is neglected, and find that hubs become vulnerable. Moreover, the addition of few false-positive reciprocal connections is more detrimental to network measures than the removal of the same number of directed false-negative connections. Our results suggest that directionality plays an essential role in shaping brain networks and highlight some limitations of undirected connectomes.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (2): 100–115.
Published: 01 June 2017
FIGURES
| View All (6)
Abstract
View article
PDF
Author Summary In recent years, connectomics has provided significant insights into the topological complexity of brain networks. However, the temporal complexity of brain networks still remains somewhat poorly understood. In this study we used entropy analysis to demonstrate that the properties of network segregation (the clustering coefficient) and integration (the participation coefficient) are temporally complex, situated between complete order and disorder. Our results also indicated that “segregated network nodes” may attempt to minimize the network’s entropy, whereas “integrated network nodes” require a higher information load, and therefore need to increase entropy. We believe that combining temporal information from functional brain networks and entropy can be used to test the decomplexification theory of disease, especially in neurological and psychiatric conditions characterized by paroxysmal brain abnormalities (e.g., schizophrenia and epilepsy). Abstract The brain operates in a complex way. The temporal complexity underlying macroscopic and spontaneous brain network activity is still to be understood. In this study, we explored the brain’s complexity by combining functional connectivity, graph theory, and entropy analyses in 25 healthy people using task-free functional magnetic resonance imaging. We calculated the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200 time points. This resulted in graphs for which time series of clustering coefficients (the “cliquiness” of a node) and participation coefficients (the between-module connectivity of a node) were estimated. For these two network metrics, sample entropy was calculated. The procedure produced a number of results: (1) Entropy is higher for the participation coefficient than for the clustering coefficient. (2) The average clustering coefficient is negatively related to its associated entropy, whereas the average participation coefficient is positively related to its associated entropy. (3) The level of entropy is network-specific to the participation coefficient, but not to the clustering coefficient. High entropy for the participation coefficient was observed in the default-mode, visual, and motor networks. These results were further validated using an independent replication dataset. Our work confirms that brain networks are temporally complex. Entropy is a good candidate metric to explore temporal network alterations in diseases with paroxysmal brain disruptions, including schizophrenia and epilepsy.