Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Anna C. Schapiro
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2018) 2 (4): 481–512.
Published: 01 October 2018
FIGURES
| View All (6)
Abstract
View article
PDF
Individual differences in brain organization exist at many spatiotemporal scales and underlie the diversity of human thought and behavior. Oscillatory neural activity is crucial for these processes, but how such rhythms are expressed across the cortex within and across individuals is poorly understood. We conducted a systematic characterization of brain-wide activity across frequency bands and oscillatory features during rest and task execution. We found that oscillatory profiles exhibit sizable group-level similarities, indicating the presence of common templates of oscillatory organization. Nonetheless, well-defined subject-specific network profiles were discernible beyond the structure shared across individuals. These individualized patterns were sufficiently stable to recognize individuals several months later. Moreover, network structure of rhythmic activity varied considerably across distinct oscillatory frequencies and features, indicating the existence of several parallel information processing streams embedded in distributed electrophysiological activity. These findings suggest that network similarity analyses may be useful for understanding the role of large-scale brain oscillations in physiology and behavior. Author Summary Neural oscillations are critical for the human brain’s ability to optimally respond to complex environmental input. However, relatively little is known about the network properties of these oscillatory rhythms. We used electroencephalography (EEG) to analyze large-scale brain wave patterns, focusing on multiple frequency bands and several key features of oscillatory communication. We show that networks defined in this manner are, in fact, distinct, suggesting that EEG activity encompasses multiple, parallel information processing streams. Remarkably, the same networks can be used to uniquely identify individuals over a period of approximately half a year, thus serving as neural fingerprints. These findings indicate that investigating oscillatory dynamics from a network perspective holds considerable promise as a tool to understand human cognition and behavior.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2017) 1 (4): 339–356.
Published: 01 December 2017
FIGURES
Abstract
View article
PDF
Brains construct internal models that support perception, prediction, and action in the external world. Individual circuits within a brain also learn internal models of the local world of input they receive, in order to facilitate efficient and robust representation. How are these internal models learned? We propose that learning is facilitated by continual switching between internally biased and externally biased modes of processing. We review computational evidence that this mode-switching can produce an error signal to drive learning. We then consider empirical evidence for the instantiation of mode-switching in diverse neural systems, ranging from subsecond fluctuations in the hippocampus to wake-sleep alternations across the whole brain. We hypothesize that these internal/external switching processes, which occur at multiple scales, can drive learning at each scale. This framework predicts that (a) slower mode-switching should be associated with learning of more temporally extended input features and (b) disruption of switching should impair the integration of new information with prior information.