Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Caterina Gratton
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 864–905.
Published: 01 October 2023
FIGURES
| View All (7)
Abstract
View article
PDF
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)–endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Journal Articles
From correlation to communication: Disentangling hidden factors from functional connectivity changes
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (2): 411–430.
Published: 30 June 2023
FIGURES
| View All (6)
Abstract
View article
PDF
While correlations in the BOLD fMRI signal are widely used to capture functional connectivity (FC) and its changes across contexts, its interpretation is often ambiguous. The entanglement of multiple factors including local coupling of two neighbors and nonlocal inputs from the rest of the network (affecting one or both regions) limits the scope of the conclusions that can be drawn from correlation measures alone. Here we present a method of estimating the contribution of nonlocal network input to FC changes across different contexts. To disentangle the effect of task-induced coupling change from the network input change, we propose a new metric, “communication change,” utilizing BOLD signal correlation and variance. With a combination of simulation and empirical analysis, we demonstrate that (1) input from the rest of the network accounts for a moderate but significant amount of task-induced FC change and (2) the proposed “communication change” is a promising candidate for tracking the local coupling in task context-induced change. Additionally, when compared to FC change across three different tasks, communication change can better discriminate specific task types. Taken together, this novel index of local coupling may have many applications in improving our understanding of local and widespread interactions across large-scale functional networks.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (1): 89–114.
Published: 01 February 2020
FIGURES
| View All (9)
Abstract
View article
PDF
Author Summary Age-related declines in cognition are associated with widespread structural and functional brain changes as well as changes in the elasticity of cerebral arteries. In this study, using an exploratory hierarchical model as a guide, and novel measures of cerebral arterial elasticity (pulse-DOT—the arterial pulse based on diffuse optical tomography), we show, for the first time, that cerebral arterial stiffness is strongly correlated with measures of functional brain network segregation, even after partialing out the effects of age. These findings suggest that preventing cerebral arterial stiffening could induce a neurophysiological cascade beneficial for preserving cognition in aging. Abstract Age-related declines in cognition are associated with widespread structural and functional brain changes, including changes in resting-state functional connectivity and gray and white matter status. Recently we have shown that the elasticity of cerebral arteries also explains some of the variance in cognitive and brain health in aging. Here, we investigated how network segregation, cerebral arterial elasticity (measured with pulse-DOT—the arterial pulse based on diffuse optical tomography) and gray and white matter status jointly account for age-related differences in cognitive performance. We hypothesized that at least some of the variance in brain and cognitive aging is linked to reduced cerebrovascular elasticity, leading to increased cortical atrophy and white matter abnormalities, which, in turn, are linked to reduced network segregation and decreases in cognitive performance. Pairwise comparisons between these variables are consistent with an exploratory hierarchical model linking them, especially when focusing on association network segregation (compared with segregation in sensorimotor networks). These findings suggest that preventing or slowing age-related changes in one or more of these factors may induce a neurophysiological cascade beneficial for preserving cognition in aging.
Includes: Supplementary data