Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
E. van Dellen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2023) 7 (3): 950–965.
Published: 01 October 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Computational models are often used to assess how functional connectivity (FC) patterns emerge from neuronal population dynamics and anatomical brain connections. It remains unclear whether the commonly used group-averaged data can predict individual FC patterns. The Jansen and Rit neural mass model was employed, where masses were coupled using individual structural connectivity (SC). Simulated FC was correlated to individual magnetoencephalography-derived empirical FC. FC was estimated using phase-based (phase lag index (PLI), phase locking value (PLV)), and amplitude-based (amplitude envelope correlation (AEC)) metrics to analyze their goodness of fit for individual predictions. Individual FC predictions were compared against group-averaged FC predictions, and we tested whether SC of a different participant could equally well predict participants’ FC patterns. The AEC provided a better match between individually simulated and empirical FC than phase-based metrics. Correlations between simulated and empirical FC were higher using individual SC compared to group-averaged SC. Using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants’ own SC. This work underlines the added value of FC simulations using individual instead of group-averaged SC for this particular computational model and could aid in a better understanding of mechanisms underlying individual functional network trajectories. Author Summary Employing the Jansen and Rit neural mass model, we simulated individual FC by using individual SC. The AEC, one of the applied FC metrics, proved to give the highest correlations between simulated and empirical FC. Also, individual SC as compared to group-averaged SC provided higher correlations between simulated and empirical FC. However, using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants’ own SC. Importantly, this work underlines the value of individual SC as compared to group-averaged SC to simulate FC. The insights obtained from this work might lead to a better understanding of mechanisms underlying individual functional network trajectories.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2022) 6 (2): 301–319.
Published: 01 June 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Brain network characteristics’ potential to serve as a neurological and psychiatric pathology biomarker has been hampered by the so-called thresholding problem. The minimum spanning tree (MST) is increasingly applied to overcome this problem. It is yet unknown whether this approach leads to more consistent findings across studies and converging outcomes of either disease-specific biomarkers or transdiagnostic effects. We performed a systematic review on MST analysis in neurophysiological and neuroimaging studies ( N = 43) to study consistency of MST metrics between different network sizes and assessed disease specificity and transdiagnostic sensitivity of MST metrics for neurological and psychiatric conditions. Analysis of data from control groups (12 studies) showed that MST leaf fraction but not diameter decreased with increasing network size. Studies showed a broad range in metric values, suggesting that specific processing pipelines affect MST topology. Contradicting findings remain in the inconclusive literature of MST brain network studies, but some trends were seen: (1) a more linelike organization characterizes neurodegenerative disorders across pathologies, and is associated with symptom severity and disease progression; (2) neurophysiological studies in epilepsy show frequency band specific MST alterations that normalize after successful treatment; and (3) less efficient MST topology in alpha band is found across disorders associated with attention impairments. Author Summary The potential of brain network characteristics to serve as biomarker of neurological and psychiatric pathology has been hampered by the so-called thresholding problem. The minimum spanning tree (MST) is increasingly applied to overcome this problem. We performed a systematic review on MST analysis in neurophysiological and neuroimaging studies and assessed disease specificity and transdiagnostic sensitivity of MST metrics for neurological and psychiatric conditions. MST leaf fraction but not diameter decreased with increasing network size. Contradicting findings remain in the literature on MST brain network studies, but some trends were seen: (1) a more linelike organization characterizes neurodegenerative disorders; (2) in epilepsy there are frequency band specific MST alterations that normalize after successful treatment; and (3) less efficient MST topology is found across disorders associated with attention impairments.
Includes: Supplementary data