Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Erfan Nozari
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Network Neuroscience 1–29.
Published: 27 February 2025
Abstract
View article
PDF
Despite significant research, discovering causal relationships from fMRI remains a challenge. Popular methods such as Granger causality and dynamic causal modeling fall short in handling contemporaneous effects and latent common causes. Methods from causal structure learning literature can address these limitations but often scale poorly with network size and need acyclicity. In this study, we first provide a taxonomy of existing methods and compare their accuracy and efficiency on simulated fMRI from simple topologies. This analysis demonstrates a pressing need for more accurate and scalable methods, motivating the design of Causal discovery for Large-scale Low-resolution Time-series with Feedback (CaLLTiF). CaLLTiF is a constraint-based method that uses conditional independence between contemporaneous and lagged variables to extract causal relationships. On simulated fMRI from the macaque connectome, CaLLTiF achieves significantly higher accuracy and scalability than all tested alternatives. From resting-state human fMRI, CaLLTiF learns causal connectomes that are highly consistent across individuals, show clear top-down flow of causal effect from attention and default mode to sensorimotor networks, exhibit Euclidean distance dependence in causal interactions, and are highly dominated by contemporaneous effects. Overall, this work takes a major step in enhancing causal discovery from whole-brain fMRI and defines a new standard for future investigations. Author Summary Discovering causal relationships from fMRI data is challenging due to contemporaneous effects and latent causes. Popular methods like Granger causality and dynamic causal modeling struggle with these issues, especially in large networks. To address this, we introduce Causal discovery for Large-scale Low-resolution Time-series with Feedback (CaLLTiF), a scalable method that uses both lagged and contemporaneous variables to identify causal relationships. CaLLTiF outperforms various existing techniques in accuracy and scalability on simulated fMRI data. When applied to human resting-state fMRI, it reveals consistent and biologically plausible patterns across individuals, with a clear top-down causal flow from attention and default mode networks to sensorimotor areas. Overall, this work advances the field of causal discovery in large-scale fMRI studies.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Network Neuroscience (2020) 4 (4): 1122–1159.
Published: 01 November 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work. Author Summary Models of communication in brain networks have been essential in building a quantitative understanding of the relationship between structure and function. More recently, control-theoretic models have also been applied to brain networks to quantify the response of brain networks to exogenous and endogenous perturbations. Mechanistically, both of these frameworks investigate the role of interregional communication in determining the behavior and response of the brain. Theoretically, both of these frameworks share common features, indicating the possibility of combining the two approaches. Drawing on a large body of past and ongoing works, this review presents a discussion of convergence and distinctions between the two approaches, and argues for the development of integrated models at the confluence of the two frameworks, with potential applications to various topics in neuroscience.